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Graded Bourbaki ideals of graded
modules



Introduction

Fact [Bourbaki]

Let R be a Noetherian normal domain and
M be a (f.g.) torsionfree R-module of rank r > 0. Then,

∃0 → R r−1 → M → I → 0,

where I is a nonzero ideal of R .



Philosophy

Properties of a module are inherited by those of its Bourbaki
ideals.

Ex.

the vanishing of cohomologies

the study of the maximal Cohen-Macaulay modules over
hypersurface rings

the Rees algebras of modules

the Hilbert function

· · ·



Observation

Let R = K [X ,Y ,Z ] and M =
⟨(

0
−Z
Y

)
,
(

−Z
0
X

)
,
(

−Y
X
0

)⟩
⊆ R3.

Then, M is a torsionfree R-module of rank 2 and

∃0 → R −→M → (Y ,Z ) → 0,

∃0 → R −→M → (X ,Z ) → 0.



Question

How to find a Bourbaki sequence?

How many Bourbaki sequences are there?

In what follows, let R be a Noetherian normal domain,
M be a f.g. R-module of rank r > 0.



Criteria to be a Bourbaki sequence

Fact

The following hold true:

M is torsionfree ⇔ ∃0 → M → R s .

M is reflexive ⇔ ∃0 → M → R s → R t .

Theorem [Herzog-Stamate-K]

Suppose that M is reflexive and choose 0 → M
ι−→ R s → R t .

Then, for a homomorphism φ : R r−1 → M of modules, the
following are equivalent:

0 → R r−1 φ−→ M → Cokerφ → 0 is a Bourbaki sequence.

htR(Ir−1(ι ◦ φ)) ≥ 2.



Example

Let R = K [X ,Y ,Z ] and M =
⟨(

0
−Z
Y

)
,
(

−Z
0
X

)
,
(

−Y
X
0

)⟩ ι

⊆ R3.

Then, M is reflexive since M = Ω2
R(K ). Let

φ : R → M ; 1 7→ f ·
(

0
−Z
Y

)
+ g ·

(
−Z
0
X

)
+ h·

(
−Y
X
0

)
.

Then, ι ◦ φ : R → M → R3; 1 7→
( −Zg−Yh

−Zf+Xh
Yf+Xg

)
.

Hence,

0 → R
φ−→ M → Cokerφ → 0 is a Bourbaki sequence

⇔ htR I1
( −Zg−Yh

−Zf+Xh
Yf+Xg

)
≥ 2.



Example - continuation

Thus,

gcd I1
( −Zg−Yh

−Zf+Xh
Yf+Xg

){
= 1 if (f , g , h) = (1, 0, 0), (0, 1, 0)...

6= 1 if (f , g , h) = (X , 0, 0), (Z ,Y ,X )...



Ubiquity of graded Bourbaki sequences

Fact (graded version of Bourbaki’s theorem)

Let

R =
⊕

n≥0 Rn be a standard graded Noetherian normal
domain of dimension ≥ 2 s.t. R0 is an infinite field,

M be a graded torsionfree R-module of rank r > 0, and

k ≥ max{deg f : f ∈ M is a graded min. gen. of M}.
Then,

∃0 → R(−k)r−1 → M → I (m) → 0,

where I is a graded ideal of R and m ∈ Z.



Under the assumptions of Fact, for arbitrary graded
homomorphism φ : R(−k)r−1 → M of modules, we have the
commutative diagram

G = R(−k)α

π:surj.

��
RMk

ι:inj.

��
F = R(−k)r−1 ∀φ //

∃Aφ

<<

M .

With the above notation, we obtain the following.



Theorem [Herzog-Stamate-K]

In addition to the assumption of Fact, suppose that

R is a CM ring s.t. K = R0 is an alg. closed field and

M is reflexive.

For fixed free basis F and G , let A ∈ Kα×(r−1) denote the
matrix representing F → G . Then,{

A ∈ Kα×(r−1) : 0 → F
ι◦π◦A−−−→ M → Coker → 0

is a Bourbaki sequence

}

is a nonempty Zariski open subset of Kα×(r−1).



Example

Let R = K [X ,Y ,Z ] with degX = degY = deg Z = 1 and

M =
⟨(

0
−Z
Y

)
,
(

−Z
0
X

)
,
(

−Y
X
0

)⟩
⊆ R3. Then, M is generated in

degree 2. For a, b, c ∈ K , set

φ(a,b,c) : R(−2) → M ; 1 7→ a·
(

0
−Z
Y

)
+ b·

(
−Z
0
X

)
+ c ·

(
−Y
X
0

)
.

Then,{
(a, b, c) ∈ K 3 : 0→F

φ(a,b,c)−−−−→M→Coker→0
is a Bourbaki sequence

}
= K 3 \ {(0, 0, 0)}.



Ideals of reduction number two



Introduction

Let

(A,m) be a Noetherian local ring of dimension d and

I an m-primary ideal.

Then ℓA(A/I
n+1) agrees with a polynomial function for n � 0,

i.e. there exist integers e0(I ), e1(I ), . . . , ed(I ) such that

ℓA(A/I
n+1) = e0(I )

(
n + d

d

)
− e1(I )

(
n + d − 1

d − 1

)
+ · · ·+ (−1)ded(I )

for all n � 0.



Philosophy

The Hilbert function ℓA(A/I
n+1) reflects the structures of

the Rees algebra R(I ) = A[It] =
⊕

n≥0 I
ntn and

the associated graded ring
G(I ) = R(I )/IR(I ) =

⊕
n≥0(I

n/I n+1)tn.

Remark: ℓA(A/I
n+1)− ℓA(A/I

n) = ℓA(G(I )n).



In what follows, let

(A,m) be a CM local ring of dimension d ≥ 2,

I an m-primary ideal, and

A/m an infinite field.

Choose a parameter reduction Q(⊆ I ) of I , i.e., I n+1 = QI n

for some n ≥ 0. Set the reduction number as

redQ I = min{n ≥ 0 | I n+1 = QI n}.

Fact [Rees, Northcott, Huneke, Ooishi]

redQ I = 0 ⇒ G(I ) ∼= (A/I )[X1, . . . ,Xd ].

In general, ℓA(A/I ) ≥ e0(I )− e1(I ) holds, and
ℓA(A/I ) = e0(I )− e1(I ) if and only if redQ I = 1.
When this is the case, G(I ) is a CM ring.



Question

redQ I = 2 ⇒ ???

Note that

∃ parameter reductions Q1 and Q2 of I such that
redQ1 I = 2 and redQ2 I = 3 ([Marley, 1993]).

∃I with redQ I = 2 such that depthG(I ) = 0.

Theorem [K, Israel J.]

I 3 = QI 2 and mI 2 ⊆ QI ⇒ ℓA(A/I ) ≥ e0(I )− e1(I ) + e2(I ).
“=” holds if and only if depthG(I ) ≥ d − 1.



Question

redQ I = 2 ⇒ ???

Note that

∃ parameter reductions Q1 and Q2 of I such that
redQ1 I = 2 and redQ2 I = 3 ([Marley, 1993]).

∃I with redQ I = 2 such that depthG(I ) = 0.

Theorem [K, Israel J.]

I 3 = QI 2 and mI 2 ⊆ QI ⇒ ℓA(A/I ) ≥ e0(I )− e1(I ) + e2(I ).
“=” holds if and only if depthG(I ) ≥ d − 1.



A graded R(Q)-module

S = IR(I )/IR(Q) =
⊕
n≥0

(I n+1/QnI )tn

is called the Sally module of I w.r.t. Q.

Fact

ℓA(A/I
n+1) = e0(I )

(
n+d
d

)
− (e0(I )− ℓA(A/I ))

(
n+d−1
d−1

)
− ℓA(Sn)

for all n ≥ 0.

mℓS = 0 for ℓ � 0.

If S 6= 0, then AssR(Q) S = {mR(Q)}.
depthG(I ) ≥ d − 1 ⇔ S is either 0 or a CM
R(Q)-module.



Idea of the proof:

By Fact, S is a torsionfree R(Q)/mℓR(Q)-module for
ℓ � 0.

The assumptions I 3 = QI 2 and mI 2 ⊆ QI show that
ℓ = 1.

∃0 → P(−1)r−1 → S → I (m) → 0, where
P = R(Q)/mR(Q) ∼= (A/m)[X1, . . . ,Xd ].



Further results

By constructing another filtration, we can remove the
assumption that mI 2 ⊆ QI :

Theorem [K, Math. Nachr.]

redQ I = 2 ⇒ ℓA(A/I ) ≥ e0(I )− e1(I ) + e2(I ).
“=” holds if and only if depthG(I ) ≥ d − 1.



Thank you for the attention!


