# Graded Bourbaki ideals of graded modules and Ideals of reduction number two

## Shinya Kumashiro

Oyama College

#### j.w.w. J. Herzog and D. I. Stamate

Virtual Commutative Algebra Seminars

28th January, 2022

This talk is based on the following papers:

#### References

- [J. HERZOG, D. I. STAMATE, K], Graded Bourbaki ideals of graded modules, Math. Z., 299, 1303–1330, 2021
- [K], Ideals of reduction number two, Israel J. Math., 243, 45–61, 2021
- [K], Graded filtrations and ideals of reduction number two, Math. Nachr., (to appear).

# Graded Bourbaki ideals of graded modules

# Introduction

#### Fact [Bourbaki]

Let R be a Noetherian normal domain and M be a (f.g.) torsionfree R-module of rank r > 0. Then,

$$\exists 0 \to R^{r-1} \to M \to I \to 0,$$

where I is a nonzero ideal of R.

## Philosophy

Properties of a module are inherited by those of its Bourbaki ideals.

## <u>Ex.</u>

- the vanishing of cohomologies
- the study of the maximal Cohen-Macaulay modules over hypersurface rings
- the Rees algebras of modules
- the Hilbert function

••••

## Observation

Let 
$$R = K[X, Y, Z]$$
 and  $M = \left\langle \begin{pmatrix} 0 \\ -Z \\ Y \end{pmatrix}, \begin{pmatrix} -Z \\ 0 \\ X \end{pmatrix}, \begin{pmatrix} -Y \\ X \\ 0 \end{pmatrix} \right\rangle \subseteq R^3$ .  
Then,  $M$  is a torsionfree  $R$ -module of rank 2 and

$$\exists 0 \rightarrow R \longrightarrow M \rightarrow (Y, Z) \rightarrow 0,$$

$$\exists 0 
ightarrow R \longrightarrow M 
ightarrow (X, Z) 
ightarrow 0.$$

## Question

- How to find a Bourbaki sequence?
- How many Bourbaki sequences are there?

In what follows, let R be a Noetherian normal domain, M be a f.g. R-module of rank r > 0.

# Criteria to be a Bourbaki sequence

#### Fact

The following hold true:

- *M* is torsionfree  $\Leftrightarrow \exists 0 \to M \to R^s$ .
- *M* is reflexive  $\Leftrightarrow \exists 0 \to M \to R^s \to R^t$ .

#### Theorem [Herzog-Stamate-K]

Suppose that M is reflexive and choose  $0 \to M \xrightarrow{\iota} R^s \to R^t$ . Then, for a homomorphism  $\varphi : R^{r-1} \to M$  of modules, the following are equivalent:

•  $0 \to R^{r-1} \xrightarrow{\varphi} M \to \operatorname{Coker} \varphi \to 0$  is a Bourbaki sequence.

• 
$$\operatorname{ht}_{R}(I_{r-1}(\iota \circ \varphi)) \geq 2.$$

## Example

Let 
$$R = K[X, Y, Z]$$
 and  $M = \left\langle \begin{pmatrix} 0 \\ -Z \\ Y \end{pmatrix}, \begin{pmatrix} -Z \\ 0 \\ X \end{pmatrix}, \begin{pmatrix} -Y \\ X \\ 0 \end{pmatrix} \right\rangle \stackrel{\iota}{\subseteq} R^3$ .  
Then,  $M$  is reflexive since  $M = \Omega_R^2(K)$ . Let

$$\varphi: R \to M; 1 \mapsto f \cdot \begin{pmatrix} 0 \\ -Z \\ Y \end{pmatrix} + g \cdot \begin{pmatrix} -Z \\ 0 \\ X \end{pmatrix} + h \cdot \begin{pmatrix} -Y \\ X \\ 0 \end{pmatrix}$$

Then,  $\iota \circ \varphi : R \to M \to R^3$ ;  $1 \mapsto \begin{pmatrix} -Zg - Yh \\ -Zf + Xh \\ Yf + Xg \end{pmatrix}$ . Hence,

$$\begin{array}{l} 0 \to R \xrightarrow{\varphi} M \to \operatorname{Coker} \varphi \to 0 \text{ is a Bourbaki sequence} \\ \Leftrightarrow \quad \operatorname{ht}_R I_1 \begin{pmatrix} -Zg - Yh \\ -Zf + Xh \\ Yf + Xg \end{pmatrix} \geq 2. \end{array}$$

# Example - continuation

Thus,

$$\gcd I_1 \begin{pmatrix} -Zg - Yh \\ -Zf + Xh \\ Yf + Xg \end{pmatrix} \begin{cases} = 1 & \text{if } (f, g, h) = (1, 0, 0), (0, 1, 0)... \\ \neq 1 & \text{if } (f, g, h) = (X, 0, 0), (Z, Y, X)... \end{cases}$$

# Ubiquity of graded Bourbaki sequences

#### Fact (graded version of Bourbaki's theorem)

#### Let

- R = ⊕<sub>n≥0</sub> R<sub>n</sub> be a standard graded Noetherian normal domain of dimension ≥ 2 s.t. R<sub>0</sub> is an infinite field,
- M be a graded torsionfree R-module of rank r > 0, and
- $k \ge \max\{\deg f : f \in M \text{ is a graded min. gen. of } M\}$ .

Then,

$$\exists 0 \to R(-k)^{r-1} \to M \to I(m) \to 0,$$

where *I* is a graded ideal of *R* and  $m \in \mathbb{Z}$ .

Under the assumptions of Fact, for arbitrary graded homomorphism  $\varphi : R(-k)^{r-1} \to M$  of modules, we have the commutative diagram



With the above notation, we obtain the following.

## Theorem [Herzog-Stamate-K]

In addition to the assumption of Fact, suppose that

- R is a CM ring s.t.  $K = R_0$  is an alg. closed field and
- *M* is reflexive.

For fixed free basis F and G, let  $A \in K^{\alpha \times (r-1)}$  denote the matrix representing  $F \to G$ . Then,

$$\left\{A \in \mathcal{K}^{\alpha \times (r-1)} : \stackrel{0 \to F}{\longrightarrow} \stackrel{\iota \circ \pi \circ A}{\longrightarrow} M \to \operatorname{Coker} \to 0 \right\}$$
 is a Bourbaki sequence

is a nonempty Zariski open subset of  $K^{\alpha \times (r-1)}$ .

#### Example

Let R = K[X, Y, Z] with deg  $X = \deg Y = \deg Z = 1$  and  $M = \left\langle \begin{pmatrix} 0 \\ -Z \\ Y \end{pmatrix}, \begin{pmatrix} -Z \\ 0 \\ X \end{pmatrix}, \begin{pmatrix} -Y \\ 0 \\ X \end{pmatrix} \right\rangle \subseteq R^3$ . Then, M is generated in degree 2. For  $a, b, c \in K$ , set

$$\varphi_{(a,b,c)}: R(-2) \to M; 1 \mapsto a \cdot \begin{pmatrix} 0 \\ -Z \\ Y \end{pmatrix} + b \cdot \begin{pmatrix} -Z \\ 0 \\ X \end{pmatrix} + c \cdot \begin{pmatrix} -Y \\ X \\ 0 \end{pmatrix}.$$

Then,

$$\left\{(a,b,c)\in \mathsf{K}^3: \underset{\text{ a Bourbaki sequence}}{\overset{\varphi_{(a,b,c)}}{\to}} M_{\to \operatorname{Coker}\to 0}\right\}=\mathsf{K}^3\setminus\{(0,0,0)\}.$$

# Ideals of reduction number two

# Introduction

#### Let

- $(A, \mathfrak{m})$  be a Noetherian local ring of dimension d and
- I an m-primary ideal.

Then  $\ell_A(A/I^{n+1})$  agrees with a polynomial function for  $n \gg 0$ , i.e. there exist integers  $e_0(I), e_1(I), \dots, e_d(I)$  such that

$$\ell_{\mathcal{A}}(\mathcal{A}/\mathcal{I}^{n+1}) = e_0(\mathcal{I})\binom{n+d}{d} - e_1(\mathcal{I})\binom{n+d-1}{d-1} + \dots + (-1)^d e_d(\mathcal{I})$$

for all  $n \gg 0$ .

#### Philosophy

The Hilbert function  $\ell_A(A/I^{n+1})$  reflects the structures of

- the **Rees algebra**  $\mathcal{R}(I) = A[It] = \bigoplus_{n>0} I^n t^n$  and
- the associated graded ring  $\mathcal{G}(I) = \mathcal{R}(I)/I\mathcal{R}(I) = \bigoplus_{n>0} (I^n/I^{n+1})t^n.$

<u>Remark</u>:  $\ell_A(A/I^{n+1}) - \ell_A(A/I^n) = \ell_A(\mathcal{G}(I)_n).$ 

In what follows, let

- $(A, \mathfrak{m})$  be a CM local ring of dimension  $d \geq 2$ ,
- I an m-primary ideal, and
- $A/\mathfrak{m}$  an infinite field.

Choose a parameter reduction  $Q(\subseteq I)$  of I, i.e.,  $I^{n+1} = QI^n$  for some  $n \ge 0$ . Set the **reduction number** as

$$\operatorname{red}_{Q} I = \min\{n \ge 0 \mid I^{n+1} = QI^n\}.$$

#### Fact [Rees, Northcott, Huneke, Ooishi]

•  $\operatorname{red}_Q I = 0 \Rightarrow \mathcal{G}(I) \cong (A/I)[X_1, \ldots, X_d].$ 

• In general,  $\ell_A(A/I) \ge e_0(I) - e_1(I)$  holds, and  $\ell_A(A/I) = e_0(I) - e_1(I)$  if and only if  $\operatorname{red}_Q I = 1$ . When this is the case,  $\mathcal{G}(I)$  is a CM ring.

## Question

$$\operatorname{red}_{Q}I = 2 \Rightarrow ???$$

#### Note that

- $\exists$  parameter reductions  $Q_1$  and  $Q_2$  of I such that  $\operatorname{red}_{Q_1} I = 2$  and  $\operatorname{red}_{Q_2} I = 3$  ([Marley, 1993]).
- $\exists I \text{ with } \operatorname{red}_Q I = 2 \text{ such that depth } \mathcal{G}(I) = 0.$

#### Theorem [K, Israel J.]

 $I^3 = QI^2$  and  $\mathfrak{m}I^2 \subseteq QI \implies \ell_A(A/I) \ge e_0(I) - e_1(I) + e_2(I)$ . "=" holds if and only if depth  $\mathcal{G}(I) \ge d - 1$ .

## Question

$$\operatorname{red}_{Q}I = 2 \Rightarrow ???$$

#### Note that

- $\exists$  parameter reductions  $Q_1$  and  $Q_2$  of I such that  $\operatorname{red}_{Q_1} I = 2$  and  $\operatorname{red}_{Q_2} I = 3$  ([Marley, 1993]).
- $\exists I$  with  $\operatorname{red}_Q I = 2$  such that depth  $\mathcal{G}(I) = 0$ .

#### Theorem [K, Israel J.]

$$I^3 = QI^2$$
 and  $\mathfrak{m}I^2 \subseteq QI \implies \ell_A(A/I) \ge e_0(I) - e_1(I) + e_2(I)$ .  
"=" holds if and only if depth  $\mathcal{G}(I) \ge d - 1$ .

A graded  $\mathcal{R}(Q)$ -module

$$S = I\mathcal{R}(I)/I\mathcal{R}(Q) = \bigoplus_{n\geq 0} (I^{n+1}/Q^nI)t^n$$

is called the **Sally module** of *I* w.r.t. *Q*.



Idea of the proof:

- By Fact, S is a torsionfree R(Q)/m<sup>ℓ</sup>R(Q)-module for ℓ ≫ 0.
- The assumptions  $I^3 = QI^2$  and  $\mathfrak{m}I^2 \subseteq QI$  show that  $\ell = 1$ .
- $\exists 0 \to P(-1)^{r-1} \to S \to I(m) \to 0$ , where  $P = \mathcal{R}(Q)/\mathfrak{m}\mathcal{R}(Q) \cong (A/\mathfrak{m})[X_1, \dots, X_d].$

# Further results

By constructing another filtration, we can remove the assumption that  $\mathfrak{m}I^2 \subseteq QI$ :

Theorem [K, Math. Nachr.]

$$\operatorname{red}_{Q} I = 2 \quad \Rightarrow \quad \ell_{A}(A/I) \ge \operatorname{e}_{0}(I) - \operatorname{e}_{1}(I) + \operatorname{e}_{2}(I).$$
  
"=" holds if and only if depth  $\mathcal{G}(I) \ge d - 1.$ 

# Thank you for the attention!