Graded Bourbaki ideals of graded modules and
 Ideals of reduction number two

Shinya Kumashiro

Oyama College

j.w.w. J. Herzog and D. I. Stamate

Virtual Commutative Algebra Seminars

28th January, 2022

This talk is based on the following papers:

References

- [J. Herzog, D. I. Stamate, K], Graded Bourbaki ideals of graded modules,
Math. Z., 299, 1303-1330, 2021
- $[\mathrm{K}]$, Ideals of reduction number two, Israel J. Math., 243, 45-61, 2021
- [K], Graded filtrations and ideals of reduction number two, Math. Nachr., (to appear).

Graded Bourbaki ideals of graded modules

Introduction

Fact [Bourbaki]

Let R be a Noetherian normal domain and M be a (f.g.) torsionfree R-module of rank $r>0$. Then,

$$
\exists 0 \rightarrow R^{r-1} \rightarrow M \rightarrow I \rightarrow 0
$$

where I is a nonzero ideal of R.

Philosophy

Properties of a module are inherited by those of its Bourbaki ideals.

Ex.

- the vanishing of cohomologies
- the study of the maximal Cohen-Macaulay modules over hypersurface rings
- the Rees algebras of modules
- the Hilbert function
- ...

Observation

Let $R=K[X, Y, Z]$ and $M=\left\langle\left(\begin{array}{c}0 \\ -Z \\ Y\end{array}\right),\left(\begin{array}{c}-Z \\ 0 \\ X\end{array}\right),\left(\begin{array}{c}-Y \\ X \\ 0\end{array}\right)\right\rangle \subseteq R^{3}$.
Then, M is a torsionfree R-module of rank 2 and

$$
\begin{aligned}
& \exists 0 \rightarrow R \longrightarrow M \rightarrow(Y, Z) \rightarrow 0 \\
& \exists 0 \rightarrow R \rightarrow M \rightarrow(X, Z) \rightarrow 0
\end{aligned}
$$

Question

- How to find a Bourbaki sequence?
- How many Bourbaki sequences are there?

In what follows, let R be a Noetherian normal domain, M be a f.g. R-module of rank $r>0$.

Criteria to be a Bourbaki sequence

Fact

The following hold true:

- M is torsionfree $\Leftrightarrow \exists 0 \rightarrow M \rightarrow R^{s}$.
- M is reflexive $\Leftrightarrow \exists 0 \rightarrow M \rightarrow R^{s} \rightarrow R^{t}$.

Theorem [Herzog-Stamate-K]

Suppose that M is reflexive and choose $0 \rightarrow M \xrightarrow{\iota} R^{s} \rightarrow R^{t}$. Then, for a homomorphism $\varphi: R^{r-1} \rightarrow M$ of modules, the following are equivalent:

- $0 \rightarrow R^{r-1} \xrightarrow{\varphi} M \rightarrow \operatorname{Coker} \varphi \rightarrow 0$ is a Bourbaki sequence.
- $\operatorname{ht}_{R}\left(I_{r-1}(\iota \circ \varphi)\right) \geq 2$.

Example

Let $R=K[X, Y, Z]$ and $M=\left\langle\left(\begin{array}{c}0 \\ -Z \\ Y\end{array}\right),\left(\begin{array}{c}-Z \\ 0 \\ X\end{array}\right),\left(\begin{array}{c}-Y \\ x \\ 0\end{array}\right)\right\rangle \stackrel{i}{\subseteq} R^{3}$.
Then, M is reflexive since $M=\Omega_{R}^{2}(K)$. Let

$$
\varphi: R \rightarrow M ; 1 \mapsto f \cdot\left(\begin{array}{c}
0 \\
-Z \\
Y
\end{array}\right)+g \cdot\left(\begin{array}{c}
-Z \\
0 \\
X
\end{array}\right)+h \cdot\left(\begin{array}{c}
-Y \\
\chi \\
0
\end{array}\right) .
$$

Then, $\iota \circ \varphi: R \rightarrow M \rightarrow R^{3} ; 1 \mapsto\left(\begin{array}{c}-Z g-Y h \\ -Z f+X h \\ Y f+X g\end{array}\right)$.
Hence,

$$
\begin{aligned}
& 0 \rightarrow R \xrightarrow[\rightarrow]{\varphi} M \rightarrow \text { Coker } \varphi \rightarrow 0 \text { is a Bourbaki sequence } \\
\Leftrightarrow & \operatorname{ht}_{R} I_{1}\left(\begin{array}{c}
-Z g-Y h \\
-Z f+X h \\
Y f+X_{g}
\end{array}\right) \geq 2 .
\end{aligned}
$$

Example - continuation

Thus,

$$
\operatorname{gcd} I_{1}\left(\begin{array}{c}
-Z g-Y h \\
-Z f+X h \\
Y f+X g
\end{array}\right) \begin{cases}=1 & \text { if }(f, g, h)=(1,0,0),(0,1,0) \ldots \\
\neq 1 & \text { if }(f, g, h)=(X, 0,0),(Z, Y, X) \ldots\end{cases}
$$

Ubiquity of graded Bourbaki sequences

Fact (graded version of Bourbaki's theorem)

Let

- $R=\bigoplus_{n>0} R_{n}$ be a standard graded Noetherian normal domain of dimension ≥ 2 s.t. R_{0} is an infinite field,
- M be a graded torsionfree R-module of rank $r>0$, and
- $k \geq \max \{\operatorname{deg} f: f \in M$ is a graded min. gen. of $M\}$.

Then,

$$
\exists 0 \rightarrow R(-k)^{r-1} \rightarrow M \rightarrow I(m) \rightarrow 0
$$

where I is a graded ideal of R and $m \in \mathbb{Z}$.

Under the assumptions of Fact, for arbitrary graded homomorphism $\varphi: R(-k)^{r-1} \rightarrow M$ of modules, we have the commutative diagram

With the above notation, we obtain the following.

Theorem [Herzog-Stamate-K]

In addition to the assumption of Fact, suppose that

- R is a CM ring s.t. $K=R_{0}$ is an alg. closed field and
- M is reflexive.

For fixed free basis F and G, let $A \in K^{\alpha \times(r-1)}$ denote the matrix representing $F \rightarrow G$. Then,

$$
\left\{A \in K^{\alpha \times(r-1)}: 0 \rightarrow \underset{\text { is a Bourbaki sequence }}{F} \xrightarrow{F \stackrel{\circ \pi \circ A}{ } M \rightarrow \text { Coker }}\right\}
$$

is a nonempty Zariski open subset of $K^{\alpha \times(r-1)}$.

Example

Let $R=K[X, Y, Z]$ with $\operatorname{deg} X=\operatorname{deg} Y=\operatorname{deg} Z=1$ and $M=\left\langle\left(\begin{array}{c}0 \\ -Z \\ Y\end{array}\right),\left(\begin{array}{c}-Z \\ 0 \\ X\end{array}\right),\left(\begin{array}{c}-Y \\ x \\ 0\end{array}\right)\right\rangle \subseteq R^{3}$. Then, M is generated in degree 2. For $a, b, c \in K$, set

$$
\varphi_{(a, b, c)}: R(-2) \rightarrow M ; 1 \mapsto a \cdot\left(\begin{array}{c}
0 \\
-Z \\
Y
\end{array}\right)+b \cdot\left(\begin{array}{c}
-Z \\
0 \\
X
\end{array}\right)+c \cdot\left(\begin{array}{c}
-Y \\
x \\
0
\end{array}\right) .
$$

Then,

$$
\left\{(a, b, c) \in K^{3}: \underset{\text { is a }}{0 \rightarrow \underset{\text { is }}{\underset{\varphi_{(a, b, c)}}{ } \text { Bourbaki sequence }} M \rightarrow \text { Coker } \rightarrow 0}\right\}=K^{3} \backslash\{(0,0,0)\} .
$$

Ideals of reduction number two

Introduction

Let

- (A, \mathfrak{m}) be a Noetherian local ring of dimension d and
- I an m-primary ideal.

Then $\ell_{A}\left(A / I^{n+1}\right)$ agrees with a polynomial function for $n \gg 0$, i.e. there exist integers $\mathrm{e}_{0}(I), \mathrm{e}_{1}(I), \ldots, \mathrm{e}_{d}(I)$ such that
$\ell_{A}\left(A / I^{n+1}\right)=\mathrm{e}_{0}(I)\binom{n+d}{d}-\mathrm{e}_{1}(I)\binom{n+d-1}{d-1}+\cdots+(-1)^{d} \mathrm{e}_{d}(I)$
for all $n \gg 0$.

Philosophy

The Hilbert function $\ell_{A}\left(A / I^{n+1}\right)$ reflects the structures of

- the Rees algebra $\mathcal{R}(I)=A[I t]=\bigoplus_{n \geq 0} I^{n} t^{n}$ and
- the associated graded ring

$$
\mathcal{G}(I)=\mathcal{R}(I) / I \mathcal{R}(I)=\bigoplus_{n \geq 0}\left(I^{n} / I^{n+1}\right) t^{n}
$$

$\underline{\text { Remark: } \ell_{A}\left(A / I^{n+1}\right)-\ell_{A}\left(A / I^{n}\right)=\ell_{A}\left(\mathcal{G}(I)_{n}\right) . . ~ . ~ . ~}$

In what follows, let

- (A, \mathfrak{m}) be a CM local ring of dimension $d \geq 2$,
- / an m-primary ideal, and
- A / \mathfrak{m} an infinite field.

Choose a parameter reduction $Q(\subseteq I)$ of I, i.e., $I^{n+1}=Q I^{n}$ for some $n \geq 0$. Set the reduction number as

$$
\operatorname{red}_{Q} I=\min \left\{n \geq 0 \mid I^{n+1}=Q I^{n}\right\} .
$$

Fact [Rees, Northcott, Huneke, Ooishi]

- $\operatorname{red}_{Q} I=0 \Rightarrow \mathcal{G}(I) \cong(A / I)\left[X_{1}, \ldots, X_{d}\right]$.
- In general, $\ell_{A}(A / I) \geq e_{0}(I)-\mathrm{e}_{1}(I)$ holds, and $\ell_{A}(A / I)=\mathrm{e}_{0}(I)-\mathrm{e}_{1}(I)$ if and only if $\operatorname{red}_{Q} I=1$. When this is the case, $\mathcal{G}(I)$ is a CM ring.

Question

$$
\operatorname{red}_{Q} I=2 \Rightarrow ? ? ?
$$

Note that

- \exists parameter reductions Q_{1} and Q_{2} of I such that $\operatorname{red}_{Q_{1}} I=2$ and $\operatorname{red}_{Q_{2}} I=3$ ([Marley, 1993]).
- $\exists I$ with $\operatorname{red}_{Q} I=2$ such that depth $\mathcal{G}(I)=0$.

Question

$$
\operatorname{red}_{Q} I=2 \Rightarrow ? ? ?
$$

Note that

- \exists parameter reductions Q_{1} and Q_{2} of I such that $\operatorname{red}_{Q_{1}} I=2$ and $\operatorname{red}_{Q_{2}} I=3$ ([Marley, 1993]).
- $\exists I$ with $\operatorname{red}_{Q} I=2$ such that depth $\mathcal{G}(I)=0$.

Theorem [K, Israel J.]

$I^{3}=Q I^{2}$ and $\mathfrak{m} /^{2} \subseteq Q I \Rightarrow \ell_{A}(A / I) \geq e_{0}(I)-\mathrm{e}_{1}(I)+\mathrm{e}_{2}(I)$. " $=$ " holds if and only if depth $\mathcal{G}(I) \geq d-1$.

A graded $\mathcal{R}(Q)$-module

$$
S=I \mathcal{R}(I) / I \mathcal{R}(Q)=\bigoplus_{n \geq 0}\left(I^{n+1} / Q^{n} I\right) t^{n}
$$

is called the Sally module of I w.r.t. Q.

Fact

- $\ell_{A}\left(A / I^{n+1}\right)=\mathrm{e}_{0}(I)\binom{n+d}{d}-\left(\mathrm{e}_{0}(I)-\ell_{A}(A / I)\right)\binom{n+d-1}{d-1}-\ell_{A}\left(S_{n}\right)$ for all $n \geq 0$.
- $\mathfrak{m}^{\ell} S=0$ for $\ell \gg 0$.
- If $S \neq 0$, then $\operatorname{Ass}_{\mathcal{R}(Q)} S=\{\mathfrak{m} \mathcal{R}(Q)\}$.
- depth $\mathcal{G}(I) \geq d-1 \Leftrightarrow S$ is either 0 or a CM $\mathcal{R}(Q)$-module.

Idea of the proof:

- By Fact, S is a torsionfree $\mathcal{R}(Q) / \mathfrak{m}^{\ell} \mathcal{R}(Q)$-module for $\ell \gg 0$.
- The assumptions $I^{3}=Q I^{2}$ and $\mathfrak{m} I^{2} \subseteq Q I$ show that $\ell=1$.
- $\exists 0 \rightarrow P(-1)^{r-1} \rightarrow S \rightarrow I(m) \rightarrow 0$, where $P=\mathcal{R}(Q) / \mathfrak{m} \mathcal{R}(Q) \cong(A / \mathfrak{m})\left[X_{1}, \ldots, X_{d}\right]$.

Further results

By constructing another filtration, we can remove the assumption that $\mathfrak{m} I^{2} \subseteq Q I$:

Theorem [K, Math. Nachr.]
$\operatorname{red}_{Q} I=2 \Rightarrow \ell_{A}(A / I) \geq \mathrm{e}_{0}(I)-\mathrm{e}_{1}(I)+\mathrm{e}_{2}(I)$.
" $=$ " holds if and only if depth $\mathcal{G}(I) \geq d-1$.

Thank you for the attention!

