Graded filtrations and Ideals of reduction number two

神代 真也

小山高専

第42回可換環論シンポジウム

2021年11月21日

Introduction

Let

- (A, \mathfrak{m}) be a *d*-dimensional Noetherian local ring and
- I an m-primary ideal.

Then $\ell_A(A/I^{n+1})$ agrees with a polynomial function for $n \gg 0$, i.e. there exist integers $e_0(I), e_1(I), \dots, e_d(I)$ such that

$$\ell_{\mathcal{A}}(\mathcal{A}/\mathcal{I}^{n+1}) = e_0(\mathcal{I})\binom{n+d}{d} - e_1(\mathcal{I})\binom{n+d-1}{d-1} + \dots + (-1)^d e_d(\mathcal{I})$$

for all $n \gg 0$.

Philosophy

Hilbert function $\ell_A(A/I^{n+1})$ reflects the structure of

- the **Rees algebra** $\mathcal{R}(I) = A[It] = \bigoplus_{n \ge 0} I^n t^n$ and
- the associated graded ring $\mathcal{G}(I) = \mathcal{R}(I)/I\mathcal{R}(I) = \bigoplus_{n \ge 0} (I^n/I^{n+1})t^n$.

Let

- (A, \mathfrak{m}) be a CM local ring of dimension $d \geq 2$,
- I an m-primary ideal, and
- A/\mathfrak{m} an infinite field.

Choose a parameter reduction Q of I, i.e., $I^{n+1} = QI^n$ for some $n \ge 0$. Set the **reduction number** as

$$\operatorname{red}_{Q}I = \min\{n \geq 0 \mid I^{n+1} = QI^{n}\}.$$

Fact

- $\operatorname{red}_Q I = 0 \Rightarrow \mathcal{G}(I) \cong (A/I)[X_1, \ldots, X_d].$
- In general, $\ell_A(A/I) \ge e_0(I) e_1(I)$ holds, and "=" holds if and only if $\operatorname{red}_Q I = 1$. When this is the case, $\mathcal{G}(I)$ is a CM ring.

Question

$$\operatorname{red}_{Q}I = 2 \Rightarrow ???$$

Note that

- \exists parameter reductions Q_1 and Q_2 of I such that $\operatorname{red}_{Q_1} I = 2$ and $\operatorname{red}_{Q_2} I = 3$.
- $\exists I$ with $\operatorname{red}_{Q}I = 2$ such that depth $\mathcal{G}(I) = 0$.

(K, Israel J.)

$$I^3 = QI^2$$
 and $\mathfrak{m}I^2 \subseteq QI \implies \ell_A(A/I) \ge e_0(I) - e_1(I) + e_2(I)$.
"=" holds if and only if depth $\mathcal{G}(I) \ge d - 1$.

Preliminary (Sally module)

In what follows,

- (A, \mathfrak{m}) be a *d*-dimensional CM local ring,
- I an m-primary ideal, and
- A/m an infinite field.

Choose a parameter reduction Q of I. Then, a f.g. graded

 $\mathcal{R}(Q)$ -module

$$S = I\mathcal{R}(I)/I\mathcal{R}(Q) = \bigoplus_{n\geq 0} (I^{n+1}/Q^nI)t^n$$

is called the **Sally module** of *I* w.r.t. *Q*.

Fact

- $\ell_A(A/I^{n+1}) = e_0(I)\binom{n+d}{d} (e_0(I) \ell_A(A/I))\binom{n+d-1}{d-1} \ell_A(S_n)$ for all $n \ge 0$.
- $\mathfrak{m}^{\ell}S = 0$ for $\ell \gg 0$.
- If $S \neq 0$, then $\operatorname{Ass}_{\mathcal{R}(Q)} S = {\mathfrak{mR}(Q)}$.
- S is generated in degree 1 to $\operatorname{red}_Q I 1$.

Problem

Give a nice filtration of S as a graded $\mathcal{R}(Q)/\mathfrak{m}^{\ell}\mathcal{R}(Q)$ -module!

Main results

Key Theorem (K, Math. Nachr.)

Suppose that

- R = ⊕_{n≥0} R_n is a standard graded Noetherian ring of dimension ≥ 2 such that (R₀, m₀) is an Artinian local ring.
- $\mathfrak{m}_0 R$ is a prime ideal. (set $\mathfrak{p} = \mathfrak{m}_0 R$)
- R/\mathfrak{p} satisfies Serre's condition (S_2) .
- *M* is a f.g. graded *R*-module generated in single degree t such that Ass_R M = {p}.

Then, the following assertions hold.

Key Theorem (K, Math. Nachr.) - continuation

- $e_1(M) \leq t e_0(M) + \ell_{R_p}(M_p) \cdot e_1(R/p)$ holds.
- "=" holds if and only if there exists the following exact sequences.

$$\begin{array}{l} 0 \to (R/\mathfrak{p})(-t) \to M = M^0 \to M^1 \to 0, \\ 0 \to (R/\mathfrak{p})(-t) \to M^1 \to M^2 \to 0, \\ & \vdots \\ 0 \to (R/\mathfrak{p})(-t) \to M^{i_0-2} \to M^{i_0-1} \to 0, \text{ and} \\ 0 \to (R/\mathfrak{p})(-t) \to M^{i_0-1} \to M^{i_0} = 0 \to 0 \end{array}$$
(1)

By applying Key Theorem to the Sally module as

$$R=\mathcal{R}(Q)/\mathfrak{m}^\ell\mathcal{R}(Q)$$
 and $M=\mathcal{R}(Q)S_{\mathrm{red}_Q/-1}$,

we obtain the following:

Theorem A (K, Math. Nachr.) If $r = \operatorname{red}_{Q}I \ge 2$, then the following are true: • $\ell_{A}(A/I) \ge e_{0}(I) - e_{1}(I) + \frac{e_{2}(I)}{r-1}$. • "=" if and only if depth $\mathcal{G}(I) \ge d-1$. When this is the case, r = 2.

Further results

Theorem B (K, Math. Nachr.)

Suppose that I is integrally closed. Then,

• $\operatorname{red}_{Q}I = 2$ if and only if $\ell_{A}(A/I) = \operatorname{e}_{0}(I) - \operatorname{e}_{1}(I) + \operatorname{e}_{2}(I)$.

• If
$$r = \operatorname{red}_{Q} I \ge 3$$
, then
 $\ell_{A}(A/I) \ge e_{0}(I) - e_{1}(I) + \frac{(r-2)\ell_{A}(I^{2}/QI) + e_{2}(I)}{r-1}$.
• "=" if and only if depth $\mathcal{G}(I) > d-1$.

• "=" if and only if depth $\mathcal{G}(I) \ge d - 1$ When this is the case, r = 3.

Example

Let
$$A = K[[X, Y]]$$
, $Q = (X^7, Y^7)$, and
 $I = Q + (X^6Y, X^5Y^2, X^2Y^5, XY^6)$. Then, $red_Q I = 2$ and

$$\ell_{A}(A/I^{n+1}) = \begin{cases} 31 & (n=0) \\ 49\binom{n+2}{2} - 21\binom{n+1}{1} & (n \ge 1). \end{cases}$$

It follows that $\ell_A(A/I) = 31 > e_0(I) - e_1(I) + e_2(I) = 28$; hence, depth $\mathcal{G}(I) = 0$.

Example

Let
$$s > 0$$
, and let $A = K[[XY^i | 0 \le i \le 2s + 1]]$,
 $Q = (X, XY^{2s+1})$, and $I = (XY^i | 0 \le i \le s) + (XY^{2s+1})$.
Then, $I^2 \subseteq Q$, $\ell_A(I^2/QI) = s$, $\operatorname{red}_Q I = 2$ and

$$\ell_A(A/I^{n+1}) = (2s+1)\binom{n+2}{2} - 2s\binom{n+1}{1} + s$$

for all $n \ge 0$. It follows that depth $\mathcal{G}(I) = 1$.

Method to give a filtration

Let

- R be a Noetherian ring and
- M a f.g. R-module such that $Ass_R M = \{\mathfrak{p}\}$. Then,

$$\exists 0 \to R/\mathfrak{p} \to M \to N^0 \to 0,$$

and

S

$$\exists 0 \to X^0 \to N^0 \to M^1 \to 0$$
 uch that $\operatorname{Ass}_R M^1 \subseteq \{\mathfrak{p}\}$ and $\operatorname{Ass}_R X^0 = \operatorname{Ass}_R N \setminus \{\mathfrak{p}\}.$

Method to give a filtration

- This process can be continued recursively.
- The argument also holds for the graded case.
- $X^i = 0$ for all *i* if and only if there exists the filtration such as (1).

Thank you for your attention.

<u>References</u>

- [S. KUMASHIRO], Graded filtrations and ideals of reduction number two, Mathematische Nachrichten, (to appear).
- [S. KUMASHIRO], Ideals of reduction number two, Israel Journal of Mathematics, 243, 45–61, 2021