Graded filtrations and Ideals of reduction number two

神代 真也

小山高專

第42回可換環論シンポジウム
2021年11月21日

Introduction

Let

- (A, \mathfrak{m}) be a d-dimensional Noetherian local ring and
- / an m-primary ideal.

Then $\ell_{A}\left(A / I^{n+1}\right)$ agrees with a polynomial function for $n \gg 0$, i.e. there exist integers $\mathrm{e}_{0}(I), \mathrm{e}_{1}(I), \ldots, \mathrm{e}_{d}(I)$ such that
$\ell_{A}\left(A / I^{n+1}\right)=\mathrm{e}_{0}(I)\binom{n+d}{d}-\mathrm{e}_{1}(I)\binom{n+d-1}{d-1}+\cdots+(-1)^{d} \mathrm{e}_{d}(I)$
for all $n \gg 0$.

Philosophy

Hilbert function $\ell_{A}\left(A / I^{n+1}\right)$ reflects the structure of - the Rees algebra $\mathcal{R}(I)=A[/ t]=\bigoplus_{n \geq 0} I^{n} t^{n}$ and

- the associated graded ring

$$
\mathcal{G}(I)=\mathcal{R}(I) / I \mathcal{R}(I)=\bigoplus_{n \geq 0}\left(I^{n} / I^{n+1}\right) t^{n} .
$$

Let

- (A, \mathfrak{m}) be a CM local ring of dimension $d \geq 2$,
- / an m-primary ideal, and
- A / \mathfrak{m} an infinite field.

Choose a parameter reduction Q of I, i.e., $I^{n+1}=Q I^{n}$ for some $n \geq 0$. Set the reduction number as

$$
\operatorname{red}_{Q} I=\min \left\{n \geq 0 \mid I^{n+1}=Q I^{n}\right\}
$$

Fact

- $\operatorname{red}_{Q} I=0 \Rightarrow \mathcal{G}(I) \cong(A / I)\left[X_{1}, \ldots, X_{d}\right]$.
- In general, $\ell_{A}(A / I) \geq \mathrm{e}_{0}(I)-\mathrm{e}_{1}(I)$ holds, and
$"="$ holds if and only if $\operatorname{red}_{Q} I=1$.
When this is the case, $\mathcal{G}(I)$ is a CM ring.

Question

$$
\operatorname{red}_{Q} I=2 \Rightarrow ? ? ?
$$

Note that

- \exists parameter reductions Q_{1} and Q_{2} of I such that $\operatorname{red}_{Q_{1}} I=2$ and $\operatorname{red}_{Q_{2}} I=3$.
- $\exists I$ with $\operatorname{red}_{Q} I=2$ such that depth $\mathcal{G}(I)=0$.
(K, Israel J.)
$I^{3}=Q I^{2}$ and $\mathfrak{m} I^{2} \subseteq Q I \Rightarrow \quad \ell_{A}(A / I) \geq e_{0}(I)-\mathrm{e}_{1}(I)+\mathrm{e}_{2}(I)$. " $=$ " holds if and only if depth $\mathcal{G}(I) \geq d-1$.

Preliminary (Sally module)

In what follows,

- (A, \mathfrak{m}) be a d-dimensional CM local ring,
- / an m-primary ideal, and
- A / \mathfrak{m} an infinite field.

Choose a parameter reduction Q of I. Then, a f.g. graded
$\mathcal{R}(Q)$-module

$$
S=I \mathcal{R}(I) / I \mathcal{R}(Q)=\bigoplus_{n \geq 0}\left(I^{n+1} / Q^{n} I\right) t^{n}
$$

is called the Sally module of I w.r.t. Q.

Fact

- $\ell_{A}\left(A / I^{n+1}\right)=\mathrm{e}_{0}(I)\binom{n+d}{d}-\left(\mathrm{e}_{0}(I)-\ell_{A}(A / I)\right)\binom{n+d-1}{d-1}-\ell_{A}\left(S_{n}\right)$ for all $n \geq 0$.
- $\mathfrak{m}^{\ell} S=0$ for $\ell \gg 0$.
- If $S \neq 0$, then $\operatorname{Ass}_{\mathcal{R}(Q)} S=\{\mathfrak{m} \mathcal{R}(Q)\}$.
- S is generated in degree 1 to $\operatorname{red}_{Q} I-1$.

Problem

Give a nice filtration of S as a graded $\mathcal{R}(Q) / \mathfrak{m}^{\ell} \mathcal{R}(Q)$-module!

Main results

Key Theorem (K, Math. Nachr.)

Suppose that

- $R=\bigoplus_{n \geq 0} R_{n}$ is a standard graded Noetherian ring of dimension ≥ 2 such that $\left(R_{0}, \mathfrak{m}_{0}\right)$ is an Artinian local ring.
- $\mathfrak{m}_{0} R$ is a prime ideal. (set $\mathfrak{p}=\mathfrak{m}_{0} R$)
- R / \mathfrak{p} satisfies Serre's condition $\left(S_{2}\right)$.
- M is a f.g. graded R-module generated in single degree t such that $\operatorname{Ass}_{R} M=\{\mathfrak{p}\}$.
Then, the following assertions hold.

Key Theorem (K, Math. Nachr.) - continuation

- $\mathrm{e}_{1}(M) \leq t \mathrm{e}_{0}(M)+\ell_{R_{\mathfrak{p}}}\left(M_{\mathfrak{p}}\right) \cdot \mathrm{e}_{1}(R / \mathfrak{p})$ holds.
- "=" holds if and only if there exists the following exact sequences.

$$
\begin{aligned}
& 0 \rightarrow(R / \mathfrak{p})(-t) \rightarrow M=M^{0} \rightarrow M^{1} \rightarrow 0, \\
& 0 \rightarrow(R / \mathfrak{p})(-t) \rightarrow M^{1} \rightarrow M^{2} \rightarrow 0, \\
& \vdots \\
& 0 \rightarrow(R / \mathfrak{p})(-t) \rightarrow M^{i_{0}-2} \rightarrow M^{i_{0}-1} \rightarrow 0, \text { and } \\
& 0 \rightarrow(R / \mathfrak{p})(-t) \rightarrow M^{i_{0}-1} \rightarrow M^{i_{0}}=0 \rightarrow 0
\end{aligned}
$$

By applying Key Theorem to the Sally module as

$$
R=\mathcal{R}(Q) / \mathfrak{m}^{\ell} \mathcal{R}(Q) \text { and } M=\mathcal{R}(Q) S_{\text {red }_{Q} I-1}
$$

we obtain the following:
Theorem A (K, Math. Nachr.)
If $r=\operatorname{red}_{Q} I \geq 2$, then the following are true:

- $\ell_{A}(A / I) \geq \mathrm{e}_{0}(I)-\mathrm{e}_{1}(I)+\frac{\mathrm{e}_{2}(I)}{r-1}$.
- " $=$ " if and only if depth $\mathcal{G}(I) \geq d-1$.

When this is the case, $r=2$.

Further results

Theorem B (K, Math. Nachr.)

Suppose that I is integrally closed. Then,

- $\operatorname{red}_{Q} I=2$ if and only if $\ell_{A}(A / I)=\mathrm{e}_{0}(I)-\mathrm{e}_{1}(I)+\mathrm{e}_{2}(I)$.
- If $r=\operatorname{red}_{Q} I \geq 3$, then

$$
\ell_{A}(A / I) \geq \mathrm{e}_{0}(I)-\mathrm{e}_{1}(I)+\frac{(r-2) \ell_{A}\left(I^{2} / Q I\right)+\mathrm{e}_{2}(I)}{r-1} .
$$

- "=" if and only if depth $\mathcal{G}(I) \geq d-1$.

When this is the case, $r=3$.

Example

Let $A=K[[X, Y]], Q=\left(X^{7}, Y^{7}\right)$, and $I=Q+\left(X^{6} Y, X^{5} Y^{2}, X^{2} Y^{5}, X Y^{6}\right)$. Then, $\operatorname{red}_{Q} I=2$ and

$$
\ell_{A}\left(A / I^{n+1}\right)= \begin{cases}31 & (n=0) \\ 49\binom{n+2}{2}-21\binom{n+1}{1} & (n \geq 1)\end{cases}
$$

It follows that $\ell_{A}(A / I)=31>\mathrm{e}_{0}(I)-\mathrm{e}_{1}(I)+\mathrm{e}_{2}(I)=28$; hence, depth $\mathcal{G}(I)=0$.

Example

Let $s>0$, and let $A=K\left[\left[X Y^{i} \mid 0 \leq i \leq 2 s+1\right]\right]$,
$Q=\left(X, X Y^{2 s+1}\right)$, and $I=\left(X Y^{i} \mid 0 \leq i \leq s\right)+\left(X Y^{2 s+1}\right)$.
Then, $I^{2} \subseteq Q, \ell_{A}\left(I^{2} / Q I\right)=s, \operatorname{red}_{Q} I=2$ and

$$
\ell_{A}\left(A / I^{n+1}\right)=(2 s+1)\binom{n+2}{2}-2 s\binom{n+1}{1}+s
$$

for all $n \geq 0$. It follows that depth $\mathcal{G}(I)=1$.

Method to give a filtration

Let

- R be a Noetherian ring and
- M a f.g. R-module such that $\operatorname{Ass}_{R} M=\{\mathfrak{p}\}$.

Then,

$$
\exists 0 \rightarrow R / \mathfrak{p} \rightarrow M \rightarrow N^{0} \rightarrow 0
$$

and

$$
\exists 0 \rightarrow X^{0} \rightarrow N^{0} \rightarrow M^{1} \rightarrow 0
$$

such that $\operatorname{Ass}_{R} M^{1} \subseteq\{\mathfrak{p}\}$ and $\operatorname{Ass}_{R} X^{0}=\operatorname{Ass}_{R} N \backslash\{\mathfrak{p}\}$.

Method to give a filtration

- This process can be continued recursively.
- The argument also holds for the graded case.
- $X^{i}=0$ for all i if and only if there exists the filtration such as (1).

Thank you for your attention.

References

- [S. Kumashiro], Graded filtrations and ideals of reduction number two, Mathematische Nachrichten, (to appear).
- [S. Kumashiro], Ideals of reduction number two, Israel Journal of Mathematics, 243, 45-61, 2021

