The Auslander-Reiten conjecture for non-Gorenstein Cohen-Macaulay rings

Conference on Commutative Algebra and its Interaction with Algebraic Geometry In Honor of Bernd Ulrich

Shinya Kumashiro (Chiba University, Japan)

1. Introduction

Auslander-Reiten conjecture (AR conjecture)

Let R be an Artin algebra and M a f.g. R-module. If $\operatorname{Ext}_{R}^{>0}(M, M \oplus R) = 0,$

then M is a projective R-module.

- 3. Sketch of proofs
- **<u>3-1. Proof of Theorem A</u>**

Proposition

- Let $2s \leq t + 1$ be positive integers. Suppose that
- R is a Gorenstein local ring and
- ► $\{x_{ij}\}_{1 \le i \le s, 1 \le j \le t}$ forms a regular sequence on *R*.

Fact (Araya, Huneke-Leuschke)

The AR conjecture holds for Gorenstein rings which are complete intersections in codimension one.

 \Rightarrow How about the AR conjecture for **non-Gorenstein rings**?

2. Main Results

Key Theorem

Suppose that R is a Gorenstein local ring. Let $Q = (x_1, x_2, \ldots, x_n)$ be an ideal of R generated by a regular

sequence on *R*. Then TFAE.

- 1. The AR conjecture holds for R.
- 2. $\exists \ell > 0$ s.t. the AR conjecture holds for R/Q^{ℓ} .
- 3. $1 \leq \forall \ell \leq n$, the AR conjecture holds for R/Q^{ℓ} .

This theorem provides two applications, i.e., Theorem A and Theorem B.

Let I denote an ideal of R generated by maximal minors of (x_{ij}) . Then

the AR conjecture holds for $R \Leftrightarrow$ it holds for R/I.

3-2. Proof of Theorem B

Proposition

With the assumption of Theorem B, we have the

following.

- $\blacktriangleright d + r < v$.
- $\blacktriangleright \exists S$: a c.i. local ring of dimension r and $\exists Q$: a parameter ideal of S s.t. $R/q \cong S/Q^2$.

* d: dimension, r: CM type, v:embedding dimension.

3-3. Proof of Key Theorem

We focus on a proof of $1. \Rightarrow 3$. for the case where

2-1. First application (determinantal rings)

Let $s \leq t$ be positive integers. Set

 $\blacktriangleright A[X] = A[X_{ij}]_{1 \le i \le s, 1 \le j \le t}$: poly. ring over a commutative ring A \blacktriangleright $\mathbb{I}_{s}(X)$: ideal of A[X] generated by the maximal minors of (X_{ij}) .

With these notations, we have the following.

Theorem A (determinantal rings)

Suppose that

 $\blacktriangleright 2s \leq t+1$ and

A is a Gorenstein ring which is a c.i. in codimension one. Then the AR conjecture holds for the determinantal ring $A[\mathbf{X}]/\mathbb{I}_{s}(\mathbf{X}).$

2-2. Second application (Ulrich ideals)

$\ell = 2$ and $n = \dim R$.

 $(1. \Rightarrow 3.)$ Set $\overline{R} = R/Q^2$. Let M be a f.g. \overline{R} -module s.t. $\operatorname{Ext}_{\overline{R}}^{>0}(M, M \oplus \overline{R}) = 0$. Consider the exact sequence $0 \rightarrow Q/Q^2 \rightarrow \overline{R} \rightarrow R/Q \rightarrow 0$

of \overline{R} -modules. Then $\operatorname{Ext}_{\overline{R}}^{i}(M, R/Q) \cong \operatorname{Ext}_{\overline{R}}^{i+1}(M, R/Q)^{\oplus n}$ for all i > 0. Hence $\operatorname{Ext}_{\overline{R}}^{\gg 0}(M, R/Q) = 0$, whence $\operatorname{Ext}_{\overline{R}}^{>0}(M, R/Q) = 0$. Thus

 $\operatorname{Tor}_{>0}^{R}(M, R/Q) = 0$

since R/Q is an Artinian Gorenstein ring. Hence we have the exact sequence

 $0 \to (M/QM)^{\oplus n} \to M \to M/QM \to 0$ of \overline{R} -modules. Then, similarly to the above, $\operatorname{Ext}_{\overline{R}}^{>0}(M, M/QM) = 0$. Thus, since $\operatorname{Tor}_{>0}^{R}(M, R/Q) = 0$, we have

 $\operatorname{Ext}_{R/Q}^{>0}(M/QM, M/QM \oplus R/Q) = 0.$

Theorem B (Ulrich ideals)

Let (R, \mathfrak{m}) be a CM local ring. Suppose that

 $\exists I: Ulrich ideal s.t. R/I is a c.i.$

Then the AR conjecture holds for R.

Here is the definition of Ulrich ideals.

Let (R, \mathfrak{m}) be a CM local ring and I an \mathfrak{m} -primary ideal. Then *I* is an *Ulrich ideal* if

 \blacktriangleright $I^2 = qI$ for some parameter ideal q of R and \blacktriangleright I/I^2 is a free R/I-module.

Hence M/QM is a free R/Q-module since the AR conjecture holds for R/Q. This concludes that M is a free R-module since $Tor_{1}^{R}(M, R/Q) = 0.$

4. References

- ► [M. AUSLANDER, I. REITEN], On a generalized version of the Nakayama conjecture, Proceedings of the American Mathematical *Society*, **52** (1975), 69–74.
- ► [S. KUMASHIRO], Auslander-Reiten conjecture for non-Gorenstein Cohen-Macaulay rings, arXiv:1906.02669.

This work was supported by JSPS KAKENHI Grant Number JP19J10579.