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Introduction

Let
o (A, m) be a d-dimensional Noetherian local ring and

@ [/ an m-primary ideal.

Then ¢4(A/1"1) agrees with a polynomial function for n > 0,
i.e. there exist integers eo(/),e1(/), ..., eq(/) such that

n+d— 1) bt (—l)ded(l)

CA(A/I"TL) = eo(/)<nzd> - el(/)< d_1

for all n > 0.



Introduction

Philosophy

Hilbert function £4(A/I") reflects the structure of
o the Rees algebra R(/) = A[lt] = D, !"t" and
@ the associated graded ring )

G(1) =R(/IR(I) = @ 5o (I"/1")t".




Tools -1. reduction

An ideal J is called a reduction of [ if

J C [ and ["1 = JI" for some n > 0.

o If Jis a reduction of /, then eg(/) = eo(J).

@ Suppose that A/m is infinite. Then, for any m-primary
ideal /, there exists a parameter ideal @ such that Q is a
reduction of /.

Hence, if (A, m) is a Cohen-Macaulay local ring with the
infinite residue field A/m, then eo(/) = eo(Q) = Ca(A/Q) for
some parameter reduction Q.

Next target: e((/)



Tools -1. reduction

Let K be a field.
o Set A=K[[X,Y]], I = (X5,X3Y2,X2Y3, Y?), and
Q = (X®, Y?). Then I? = QI? and

17 (n=0)
Ca(A/I™Y) =
o Let A= K[[X]]//s(X) and m the maximal ideal, where
X = (Xj) is an s x t matrix with st variables. Then
m® = Qm°~! for a suitable parameter ideal Q.




Tools -2. Sally module

In what follows,
@ (A,m) be a d-dimensional Cohen-Macaulay local ring,
@ [/ an m-primary ideal, and

@ @ a parameter reduction of /.
Then a f.g. graded R(Q)-module

Sol(l) = IR(N/IR(Q) = P(I"/Q"1)¢"

n>0

is called the Sally module of / w.r.t. Q.



Tools -2. Sally module

o For all integer n > 0, we have

Ca(A/17T) =eo(1) <" Z d) — (eo(1) — £a(A/1)) (n ; iI 1>

= La([Sq(N]n)-

o If So(/) # 0, then Assg(g) Sq(/) = {mR(Q)}.




Known results

Let
@ (A, m) be a Cohen-Macaulay local ring,
@ [ an m-primary ideal, and
@ @ a parameter reduction of /.

Suppose d =dim A > 1. Then

o (Northcott) Ca(A/I) > eo(l) — ex(!).

o (Huneke, Ooishi) £a(A/1) = eo(l) —er(l) & 17 = QI.
When this is the case, G(/) is a CM ring, and so is R(/)
if d > 2.




Known results

o (Sally) £a(A/1) = eo(/) — ex(/) + 1 and ex(/) # 0
& 3= QI?and (A(1?/Q1) =1
= depthG(/) > d — 1.

o (Goto-Nishida-Ozeki) (a(A/l) = eo(l) —er(/) + 1
o Soll) = (X, X) C (Am)[Xe, ., X,
where ¢ = (4(1?/QI)
= 3= QP m/2C @, and depth G(/) > d — c.




o la(A/l) =eo(l) —er(l) +2=777
o I3=QI?=777

Note that reduction number depends on the choice of @ in
general. Hence /°> = QI/? may not be characterized by the
Hilbert coefficients.



Main Results

Suppose d > 2.

Main Theorem [K]

Suppose that /> = QI? and m/?> C QI. Then
Ca(A/1) > eo(l) —er(1) + ex(]).

When this is the case, “=" holds < depthG(/) > d — 1.

o (Narita) ex(/) > 0.

@ (Corso-Polini-Rossi) If I is integrally closed, then
KA(A//) S eo(/) — 61(/) ar ez(l).




Main Results

Suppose d > 2.

Corollary (cf. Corso-Polini-Rossi)

Suppose that m® = Qm?2. Then

1 = 0a(A/m) = eo(m) — eq(m) + ex(m).

When this is the case, depthG(m) > d — 1.




ETN]IES

o Set A= K[[X, Y]], | = (X5 X3Y2,X2Y3, Y5), and
Q = (X5, Y5). Then I3 = QI2, m/?> C Q/, and

n+1y __ 17 (n N 0)
EA(A// ) = {25(n;-2) _ 10("‘1‘1> ) (n > 1).

It follows that (A(A/I) = eo(]) —e1(l) + ex(/) = 17,
whence depth G(/) > 1.

o Let A= K|[[X]]/h(X) and m the maximal ideal. Then
m3 = Qm? for a suitable parameter ideal Q. It follows
that 1 = eg(m) — e1(m) + ex(m) and
depthG(m) > dimA—1=2t+ 1.




ETN]IES

Set A— K[[X, Y]], | = (X7, XSY, X5Y2, X2Y®, XYS, Y7),
and Q@ = (X7, Y"). Then I3 = QI?, m/> Z QI, and

vy 31 (n=0)
EA(A// ) - {49(,1.;2) . 21(n—:&l—1) (n Z 1)

Hence CA(A/1) > eo(l) — e1(1) + ex(1) holds. ]




Proof of Main Theorem

Set
R=R(I), T =R(Q), and S = So(/).

We may assume that S # 0.

The following are equivalent:
o 3= QI? and m/? C QI;

@ S=TS; and mS = 0.

Hence, S is a f.g. graded T/mT-module. Set
P=T/mT = (A/m)[Xi,...,Xy]. Then we get Assp S = {0}
since Asst S = {mT}.



Proof of Main Theorem

Theorem (graded Bourbaki sequence)

Let R = @®,>0R, be a Noetherian normal domain such that Ry
is an infinite field. Let M = RM, be a torsionfree graded
R-module of rank r > 0. Then there exist a graded ideal J
and m € Z such that

0= Rt = M- J(m)—0

is a graded exact sequence.

By applying the theorem, we get the exact sequence
0—P(-1)"t =S —Jm)—0,

where J is a graded ideal of P and m € 7Z.



Proof of Main Theorem

That is,
0= P(-1)"t =S — P(m)— (P/J)(m) — 0.
We may assume that htpJ > 2. Then

Ca(Sn) =(r — 1)la(Pp-1) + €a(Pntm) — La((P/J)n+m)

n—14+d-1 n+m+d-—1
—(r—1)< g1 )-l—( g1 )—(Iower terms)

n+d-1 n+d-—2
—r< do1 >—(r—1—m)< d—2 )—(Iowerterms).



Proof of Main Theorem

Therefore,
€A(A//n+1)
—eal) (") = ot~ eatarm) (" 1) -t

=eo(l)<"j d) — (eo(1) — La(A/1) + 1) (” Z i; 1)

d—2
+(r—1—m) (n—;—_2 )—l—(lower terms).

Hence we obtain

ei(l) =eo(l) —la(A/l)+r and e(l)=r—1—m.



Proof of Main Theorem

It follows that
Ca(A/l) = eo(l) —ex(l) +ex() + 1+ m.

On the other hand, since S — J(m) — 0 is exact, J is
generated by elements of degree m+ 1. Hence m+ 1 > 0.
Thus we have C4(A/1) > eo(!) — e1(]) + ex(/) as desired.



Thank you for your attention.



