Ideals of reduction number two

神代 真也

千葉大学

$$
\begin{gathered}
\text { 可換環論オンラインワークショップ } \\
2020 \text { 年 } 11 \text { 月 } 22 \text { 日 }
\end{gathered}
$$

to appear Israel J．Math．（arXiv：1911．08918）

Introduction

Let

- (A, \mathfrak{m}) be a d-dimensional Noetherian local ring and
- / an m-primary ideal.

Then $\ell_{A}\left(A / I^{n+1}\right)$ agrees with a polynomial function for $n \gg 0$, i.e. there exist integers $\mathrm{e}_{0}(I), \mathrm{e}_{1}(I), \ldots, \mathrm{e}_{d}(I)$ such that
$\ell_{A}\left(A / I^{n+1}\right)=\mathrm{e}_{0}(I)\binom{n+d}{d}-\mathrm{e}_{1}(I)\binom{n+d-1}{d-1}+\cdots+(-1)^{d} \mathrm{e}_{d}(I)$
for all $n \gg 0$.

Introduction

Philosophy

Hilbert function $\ell_{A}\left(A / I^{n+1}\right)$ reflects the structure of

- the Rees algebra $\mathcal{R}(I)=A[I t]=\bigoplus_{n \geq 0} I^{n} t^{n}$ and
- the associated graded ring

$$
\mathcal{G}(I)=\mathcal{R}(I) / I \mathcal{R}(I)=\bigoplus_{n \geq 0}\left(I^{n} / I^{n+1}\right) t^{n}
$$

Tools -1. reduction

Definition

An ideal J is called a reduction of I if

$$
J \subseteq I \text { and } I^{n+1}=J I^{n} \text { for some } n \geq 0
$$

Fact

- If J is a reduction of I, then $\mathrm{e}_{0}(I)=\mathrm{e}_{0}(J)$.
- Suppose that A / \mathfrak{m} is infinite. Then, for any \mathfrak{m}-primary ideal I, there exists a parameter ideal Q such that Q is a reduction of I.

Hence, if (A, \mathfrak{m}) is a Cohen-Macaulay local ring with the infinite residue field A / \mathfrak{m}, then $\mathrm{e}_{0}(I)=\mathrm{e}_{0}(Q)=\ell_{A}(A / Q)$ for some parameter reduction Q.

Next target: $\mathrm{e}_{1}(I)$

Tools -1. reduction

Example

Let K be a field.

- Set $A=K[[X, Y]], I=\left(X^{5}, X^{3} Y^{2}, X^{2} Y^{3}, Y^{5}\right)$, and $Q=\left(X^{5}, Y^{5}\right)$. Then $I^{3}=Q I^{2}$ and

$$
\ell_{A}\left(A / I^{n+1}\right)= \begin{cases}17 & (n=0) \\ 25\binom{n+2}{2}-10\binom{n+1}{1}+2 & (n \geq 1)\end{cases}
$$

- Let $A=K[[\mathbb{X}]] / I_{s}(\mathbb{X})$ and \mathfrak{m} the maximal ideal, where $\mathbb{X}=\left(X_{i j}\right)$ is an $s \times t$ matrix with st variables. Then $\mathfrak{m}^{s}=Q \mathfrak{m}^{s-1}$ for a suitable parameter ideal Q.

Tools -2. Sally module

In what follows,

- (A, \mathfrak{m}) be a d-dimensional Cohen-Macaulay local ring,
- / an m-primary ideal, and
- Q a parameter reduction of I.

Then a f.g. graded $\mathcal{R}(Q)$-module

$$
\mathcal{S}_{Q}(I)=I \mathcal{R}(I) / I \mathcal{R}(Q)=\bigoplus_{n \geq 0}\left(I^{n+1} / Q^{n} I\right) t^{n}
$$

is called the Sally module of I w.r.t. Q.

Tools -2. Sally module

Fact

- For all integer $n \geq 0$, we have

$$
\begin{aligned}
\ell_{A}\left(A / I^{n+1}\right)= & \mathrm{e}_{0}(I)\binom{n+d}{d}-\left(\mathrm{e}_{0}(I)-\ell_{A}(A / I)\right)\binom{n+d-1}{d-1} \\
& -\ell_{A}\left(\left[\mathcal{S}_{Q}(I)\right]_{n}\right) .
\end{aligned}
$$

- If $\mathcal{S}_{Q}(I) \neq 0$, then $\operatorname{Ass}_{\mathcal{R}(Q)} \mathcal{S}_{Q}(I)=\{\mathfrak{m} \mathcal{R}(Q)\}$.

Known results

Let

- (A, \mathfrak{m}) be a Cohen-Macaulay local ring,
- / an m-primary ideal, and
- Q a parameter reduction of l.

Suppose $d=\operatorname{dim} A \geq 1$. Then

- (Northcott) $\ell_{A}(A / I) \geq \mathrm{e}_{0}(I)-\mathrm{e}_{1}(I)$.
- (Huneke, Ooishi) $\ell_{A}(A / I)=\mathrm{e}_{0}(I)-\mathrm{e}_{1}(I) \Leftrightarrow I^{2}=Q I$. When this is the case, $\mathcal{G}(I)$ is a CM ring, and so is $\mathcal{R}(I)$ if $d \geq 2$.

Known results

- (Sally) $\ell_{A}(A / I)=\mathrm{e}_{0}(I)-\mathrm{e}_{1}(I)+1$ and $\mathrm{e}_{2}(I) \neq 0$ $\Leftrightarrow I^{3}=Q I^{2}$ and $\ell_{A}\left(I^{2} / Q I\right)=1$
\Rightarrow depth $\mathcal{G}(I) \geq d-1$.
- (Goto-Nishida-Ozeki) $\ell_{A}(A / I)=\mathrm{e}_{0}(I)-\mathrm{e}_{1}(I)+1$ $\Leftrightarrow \mathcal{S}_{Q}(I) \cong\left(X_{1}, \ldots, X_{c}\right) \subseteq(A / \mathfrak{m})\left[X_{1}, \ldots, X_{d}\right]$, where $c=\ell_{A}\left(I^{2} / Q I\right)$
$\Rightarrow I^{3}=Q I^{2}, \mathfrak{m} I^{2} \subseteq Q I$, and depth $\mathcal{G}(I) \geq d-c$.

Question

- $\ell_{A}(A / I)=\mathrm{e}_{0}(I)-\mathrm{e}_{1}(I)+2 \Rightarrow ? ? ?$
- $I^{3}=Q I^{2} \Rightarrow ? ? ?$

Note that reduction number depends on the choice of Q in general. Hence $I^{3}=Q I^{2}$ may not be characterized by the Hilbert coefficients.

Main Results

Suppose $d \geq 2$.

Main Theorem [K]

Suppose that $I^{3}=Q I^{2}$ and $\mathfrak{m} I^{2} \subseteq Q I$. Then

$$
\ell_{A}(A / I) \geq \mathrm{e}_{0}(I)-\mathrm{e}_{1}(I)+\mathrm{e}_{2}(I)
$$

When this is the case, " $=$ " holds \Leftrightarrow depth $\mathcal{G}(I) \geq d-1$.

Remark

- (Narita) $\mathrm{e}_{2}(I) \geq 0$.
- (Corso-Polini-Rossi) If I is integrally closed, then $\ell_{A}(A / I) \leq \mathrm{e}_{0}(I)-\mathrm{e}_{1}(I)+\mathrm{e}_{2}(I)$.

Main Results

Suppose $d \geq 2$.
Corollary (cf. Corso-Polini-Rossi)
Suppose that $\mathfrak{m}^{3}=Q \mathfrak{m}^{2}$. Then

$$
1=\ell_{A}(A / \mathfrak{m})=e_{0}(\mathfrak{m})-e_{1}(\mathfrak{m})+e_{2}(\mathfrak{m}) .
$$

When this is the case, depth $\mathcal{G}(\mathfrak{m}) \geq d-1$.

Examples

Example

- Set $A=K[[X, Y]], I=\left(X^{5}, X^{3} Y^{2}, X^{2} Y^{3}, Y^{5}\right)$, and $Q=\left(X^{5}, Y^{5}\right)$. Then $I^{3}=Q I^{2}, \mathfrak{m} I^{2} \subseteq Q I$, and

$$
\ell_{A}\left(A / I^{n+1}\right)= \begin{cases}17 & (n=0) \\ 25\binom{n+2}{2}-10\binom{n+1}{1}+2 & (n \geq 1)\end{cases}
$$

It follows that $\ell_{A}(A / I)=\mathrm{e}_{0}(I)-\mathrm{e}_{1}(I)+\mathrm{e}_{2}(I)=17$, whence depth $\mathcal{G}(I) \geq 1$.

- Let $A=K[[\mathbb{X}]] / I_{3}(\mathbb{X})$ and \mathfrak{m} the maximal ideal. Then $\mathfrak{m}^{3}=Q \mathfrak{m}^{2}$ for a suitable parameter ideal Q. It follows that $1=\mathrm{e}_{0}(\mathfrak{m})-\mathrm{e}_{1}(\mathfrak{m})+\mathrm{e}_{2}(\mathfrak{m})$ and $\operatorname{depth} \mathcal{G}(\mathfrak{m}) \geq \operatorname{dim} A-1=2 t+1$.

Examples

Example

Set $A=K[[X, Y]], I=\left(X^{7}, X^{6} Y, X^{5} Y^{2}, X^{2} Y^{5}, X Y^{6}, Y^{7}\right)$, and $Q=\left(X^{7}, Y^{7}\right)$. Then $I^{3}=Q I^{2}, \mathfrak{m} I^{2} \nsubseteq Q I$, and

$$
\ell_{A}\left(A / I^{n+1}\right)= \begin{cases}31 & (n=0) \\ 49\binom{n+2}{2}-21\binom{n+1}{1} & (n \geq 1)\end{cases}
$$

Hence $\ell_{A}(A / I) \geq \mathrm{e}_{0}(I)-\mathrm{e}_{1}(I)+\mathrm{e}_{2}(I)$ holds.

Proof of Main Theorem

Set

$$
R=\mathcal{R}(I), T=\mathcal{R}(Q), \text { and } S=\mathcal{S}_{Q}(I)
$$

We may assume that $S \neq 0$.

Claim

The following are equivalent:

- $I^{3}=Q I^{2}$ and $\mathfrak{m} I^{2} \subseteq Q I$;
- $S=T S_{1}$ and $\mathfrak{m} S=0$.

Hence, S is a f.g. graded $T / \mathfrak{m} T$-module. Set $P=T / \mathfrak{m} T \cong(A / \mathfrak{m})\left[X_{1}, \ldots, X_{d}\right]$. Then we get $\operatorname{Ass}_{P} S=\{0\}$ since Ass $_{T} S=\{\mathfrak{m} T\}$.

Proof of Main Theorem

Theorem (graded Bourbaki sequence)

Let $R=\oplus_{n \geq 0} R_{n}$ be a Noetherian normal domain such that R_{0} is an infinite field. Let $M=R M_{0}$ be a torsionfree graded R-module of rank $r>0$. Then there exist a graded ideal J and $m \in \mathbb{Z}$ such that

$$
0 \rightarrow R^{r-1} \rightarrow M \rightarrow J(m) \rightarrow 0
$$

is a graded exact sequence.
By applying the theorem, we get the exact sequence

$$
0 \rightarrow P(-1)^{r-1} \rightarrow S \rightarrow J(m) \rightarrow 0
$$

where J is a graded ideal of P and $m \in \mathbb{Z}$.

Proof of Main Theorem

That is,

$$
0 \rightarrow P(-1)^{r-1} \rightarrow S \rightarrow P(m) \rightarrow(P / J)(m) \rightarrow 0
$$

We may assume that ${h t_{P} J} \geq 2$. Then

$$
\begin{aligned}
\ell_{A}\left(S_{n}\right) & =(r-1) \ell_{A}\left(P_{n-1}\right)+\ell_{A}\left(P_{n+m}\right)-\ell_{A}\left((P / J)_{n+m}\right) \\
& =(r-1)\binom{n-1+d-1}{d-1}+\binom{n+m+d-1}{d-1}-(\text { lower terms }) \\
& =r\binom{n+d-1}{d-1}-(r-1-m)\binom{n+d-2}{d-2}-\text { (lower terms) }
\end{aligned}
$$

Proof of Main Theorem

Therefore,

$$
\begin{aligned}
& \ell_{A}\left(A / I^{n+1}\right) \\
= & \mathrm{e}_{0}(I)\binom{n+d}{d}-\left(\mathrm{e}_{0}(I)-\ell_{A}(A / I)\right)\binom{n+d-1}{d-1}-\ell_{A}\left(S_{n}\right) \\
= & \mathrm{e}_{0}(I)\binom{n+d}{d}-\left(\mathrm{e}_{0}(I)-\ell_{A}(A / I)+r\right)\binom{n+d-1}{d-1} \\
& +(r-1-m)\binom{n+d-2}{d-2}+(\text { lower terms }) .
\end{aligned}
$$

Hence we obtain

$$
\mathrm{e}_{1}(I)=\mathrm{e}_{0}(I)-\ell_{A}(A / I)+r \quad \text { and } \quad \mathrm{e}_{2}(I)=r-1-m
$$

Proof of Main Theorem

It follows that

$$
\ell_{A}(A / I)=\mathrm{e}_{0}(I)-\mathrm{e}_{1}(I)+\mathrm{e}_{2}(I)+1+m
$$

On the other hand, since $S \rightarrow J(m) \rightarrow 0$ is exact, J is generated by elements of degree $m+1$. Hence $m+1 \geq 0$. Thus we have $\ell_{A}(A / I) \geq \mathrm{e}_{0}(I)-\mathrm{e}_{1}(I)+\mathrm{e}_{2}(I)$ as desired.

Thank you for your attention.

