Ideals of reduction number two

神代 真也

千葉大学

可換環論オンラインワークショップ

2020年11月22日

to appear Israel J. Math. (arXiv:1911.08918)

Introduction

Let

- (A, \mathfrak{m}) be a *d*-dimensional Noetherian local ring and
- I an m-primary ideal.

Then $\ell_A(A/I^{n+1})$ agrees with a polynomial function for $n \gg 0$, i.e. there exist integers $e_0(I), e_1(I), \dots, e_d(I)$ such that

$$\ell_{\mathcal{A}}(\mathcal{A}/\mathcal{I}^{n+1}) = e_0(\mathcal{I})\binom{n+d}{d} - e_1(\mathcal{I})\binom{n+d-1}{d-1} + \dots + (-1)^d e_d(\mathcal{I})$$

for all $n \gg 0$.

Introduction

Philosophy

Hilbert function $\ell_A(A/I^{n+1})$ reflects the structure of

- the Rees algebra $\mathcal{R}(I) = \mathcal{A}[It] = \bigoplus_{n \ge 0} I^n t^n$ and
- the associated graded ring $\mathcal{G}(I) = \mathcal{R}(I)/I\mathcal{R}(I) = \bigoplus_{n \ge 0} (I^n/I^{n+1})t^n.$

Tools -1. reduction

Definition

An ideal J is called a reduction of I if

 $J \subseteq I$ and $I^{n+1} = JI^n$ for some $n \ge 0$.

Fact

- If J is a reduction of I, then $e_0(I) = e_0(J)$.
- Suppose that A/\mathfrak{m} is infinite. Then, for any \mathfrak{m} -primary ideal I, there exists a parameter ideal Q such that Q is a reduction of I.

Hence, if (A, \mathfrak{m}) is a Cohen-Macaulay local ring with the infinite residue field A/\mathfrak{m} , then $e_0(I) = e_0(Q) = \ell_A(A/Q)$ for some parameter reduction Q.

Next target: $e_1(I)$

Tools -1. reduction

Example

Let K be a field.

• Set
$$A = K[[X, Y]]$$
, $I = (X^5, X^3Y^2, X^2Y^3, Y^5)$, and $Q = (X^5, Y^5)$. Then $I^3 = QI^2$ and

$$\ell_{\mathcal{A}}(\mathcal{A}/I^{n+1}) = \begin{cases} 17 & (n=0)\\ 25\binom{n+2}{2} - 10\binom{n+1}{1} + 2 & (n \ge 1). \end{cases}$$

• Let $A = K[[X]]/I_s(X)$ and \mathfrak{m} the maximal ideal, where $X = (X_{ij})$ is an $s \times t$ matrix with st variables. Then $\mathfrak{m}^s = Q\mathfrak{m}^{s-1}$ for a suitable parameter ideal Q.

Tools -2. Sally module

In what follows,

- (A, \mathfrak{m}) be a *d*-dimensional Cohen-Macaulay local ring,
- I an m-primary ideal, and
- Q a parameter reduction of I.

Then a f.g. graded $\mathcal{R}(Q)$ -module

$$\mathcal{S}_Q(I) = I\mathcal{R}(I)/I\mathcal{R}(Q) = \bigoplus_{n\geq 0} (I^{n+1}/Q^n I)t^n$$

is called the Sally module of I w.r.t. Q.

Tools -2. Sally module

Fact

• For all integer $n \ge 0$, we have

$$\ell_{A}(A/I^{n+1}) = e_{0}(I) \binom{n+d}{d} - (e_{0}(I) - \ell_{A}(A/I)) \binom{n+d-1}{d-1} - \ell_{A}([\mathcal{S}_{Q}(I)]_{n}).$$

• If $S_Q(I) \neq 0$, then $\operatorname{Ass}_{\mathcal{R}(Q)} S_Q(I) = \{\mathfrak{m}\mathcal{R}(Q)\}.$

Known results

Let

- (A, \mathfrak{m}) be a Cohen-Macaulay local ring,
- I an m-primary ideal, and
- Q a parameter reduction of I.

Suppose $d = \dim A \ge 1$. Then

- (Northcott) $\ell_A(A/I) \ge e_0(I) e_1(I)$.
- (Huneke, Ooishi) $\ell_A(A/I) = e_0(I) e_1(I) \Leftrightarrow I^2 = QI$. When this is the case, $\mathcal{G}(I)$ is a CM ring, and so is $\mathcal{R}(I)$ if $d \ge 2$.

Known results

- (Sally) $\ell_A(A/I) = e_0(I) e_1(I) + 1$ and $e_2(I) \neq 0$ $\Leftrightarrow I^3 = QI^2$ and $\ell_A(I^2/QI) = 1$ $\Rightarrow \text{depth } \mathcal{G}(I) \ge d - 1.$
- (Goto-Nishida-Ozeki) $\ell_A(A/I) = e_0(I) e_1(I) + 1$ $\Leftrightarrow S_Q(I) \cong (X_1, \dots, X_c) \subseteq (A/\mathfrak{m})[X_1, \dots, X_d],$ where $c = \ell_A(I^2/QI)$ $\Rightarrow I^3 = QI^2, \mathfrak{m}I^2 \subseteq QI$, and depth $\mathcal{G}(I) \ge d - c$.

Question

Note that reduction number depends on the choice of Q in general. Hence $I^3 = QI^2$ may not be characterized by the Hilbert coefficients.

Main Results

Suppose $d \ge 2$.

Main Theorem [K]

Suppose that $I^3 = QI^2$ and $\mathfrak{m}I^2 \subseteq QI$. Then

$$\ell_A(A/I) \ge \mathrm{e}_0(I) - \mathrm{e}_1(I) + \mathrm{e}_2(I).$$

When this is the case, "=" holds \Leftrightarrow depth $\mathcal{G}(I) \ge d - 1$.

Remark

- (Narita) $e_2(I) \ge 0$.
- (Corso-Polini-Rossi) If *I* is integrally closed, then $\ell_A(A/I) \leq e_0(I) e_1(I) + e_2(I)$.

Main Results

Suppose $d \ge 2$.

Corollary (cf. Corso-Polini-Rossi)

Suppose that $\mathfrak{m}^3 = Q\mathfrak{m}^2$. Then

$$1 = \ell_{\mathcal{A}}(\mathcal{A}/\mathfrak{m}) = e_0(\mathfrak{m}) - e_1(\mathfrak{m}) + e_2(\mathfrak{m}).$$

When this is the case, depth $\mathcal{G}(\mathfrak{m}) \geq d-1$.

Examples

Example

• Set A = K[[X, Y]], $I = (X^5, X^3Y^2, X^2Y^3, Y^5)$, and $Q = (X^5, Y^5)$. Then $I^3 = QI^2$, $\mathfrak{m}I^2 \subseteq QI$, and

$$\ell_{A}(A/I^{n+1}) = \begin{cases} 17 & (n=0)\\ 25\binom{n+2}{2} - 10\binom{n+1}{1} + 2 & (n \ge 1). \end{cases}$$

It follows that $\ell_A(A/I) = e_0(I) - e_1(I) + e_2(I) = 17$, whence depth $\mathcal{G}(I) \ge 1$.

 Let A = K[[X]]/I₃(X) and m the maximal ideal. Then m³ = Qm² for a suitable parameter ideal Q. It follows that 1 = e₀(m) - e₁(m) + e₂(m) and depth G(m) ≥ dim A - 1 = 2t + 1.

Examples

Example

Set
$$A = K[[X, Y]]$$
, $I = (X^7, X^6Y, X^5Y^2, X^2Y^5, XY^6, Y^7)$,
and $Q = (X^7, Y^7)$. Then $I^3 = QI^2$, $\mathfrak{m}I^2 \nsubseteq QI$, and

$$\ell_{A}(A/I^{n+1}) = \begin{cases} 31 & (n=0) \\ 49\binom{n+2}{2} - 21\binom{n+1}{1} & (n \ge 1) \end{cases}$$

Hence $\ell_A(A/I) \ge e_0(I) - e_1(I) + e_2(I)$ holds.

Set

$$R = \mathcal{R}(I), T = \mathcal{R}(Q), \text{ and } S = \mathcal{S}_Q(I).$$

We may assume that $S \neq 0$.

Claim

The following are equivalent:

•
$$I^3 = QI^2$$
 and $\mathfrak{m}I^2 \subseteq QI$;

•
$$S = TS_1$$
 and $\mathfrak{m}S = 0$.

Hence, S is a f.g. graded $T/\mathfrak{m}T$ -module. Set $P = T/\mathfrak{m}T \cong (A/\mathfrak{m})[X_1, \ldots, X_d]$. Then we get $\operatorname{Ass}_P S = \{0\}$ since $\operatorname{Ass}_T S = \{\mathfrak{m}T\}$.

Theorem (graded Bourbaki sequence)

Let $R = \bigoplus_{n \ge 0} R_n$ be a Noetherian normal domain such that R_0 is an infinite field. Let $M = RM_0$ be a torsionfree graded R-module of rank r > 0. Then there exist a graded ideal J and $m \in \mathbb{Z}$ such that

$$0 \to R^{r-1} \to M \to J(m) \to 0$$

is a graded exact sequence.

By applying the theorem, we get the exact sequence

$$0 \to P(-1)^{r-1} \to S \to J(m) \to 0,$$

where J is a graded ideal of P and $m \in \mathbb{Z}$.

That is,

$$0 \rightarrow P(-1)^{r-1} \rightarrow S \rightarrow P(m) \rightarrow (P/J)(m) \rightarrow 0.$$

We may assume that $ht_P J \ge 2$. Then

$$\ell_{A}(S_{n}) = (r-1)\ell_{A}(P_{n-1}) + \ell_{A}(P_{n+m}) - \ell_{A}((P/J)_{n+m})$$

= $(r-1)\binom{n-1+d-1}{d-1} + \binom{n+m+d-1}{d-1} - (\text{lower terms})$
= $r\binom{n+d-1}{d-1} - (r-1-m)\binom{n+d-2}{d-2} - (\text{lower terms}).$

Therefore,

$$\ell_{A}(A/I^{n+1}) = e_{0}(I) \binom{n+d}{d} - (e_{0}(I) - \ell_{A}(A/I)) \binom{n+d-1}{d-1} - \ell_{A}(S_{n})$$
$$= e_{0}(I) \binom{n+d}{d} - (e_{0}(I) - \ell_{A}(A/I) + r) \binom{n+d-1}{d-1}$$
$$+ (r-1-m) \binom{n+d-2}{d-2} + (\text{lower terms}).$$

Hence we obtain

 $e_1(I) = e_0(I) - \ell_A(A/I) + r$ and $e_2(I) = r - 1 - m$.

It follows that

 $\ell_A(A/I) = e_0(I) - e_1(I) + e_2(I) + 1 + m.$

On the other hand, since $S \to J(m) \to 0$ is exact, J is generated by elements of degree m + 1. Hence $m + 1 \ge 0$. Thus we have $\ell_A(A/I) \ge e_0(I) - e_1(I) + e_2(I)$ as desired.

Thank you for your attention.