Residually faithful modules and the Cohen-Macaulay type of idealizations

S. Kumashiro

Chiba University

j.w.w. S. Goto and N. T. H. Loan

The Mini-Workshop on Commutative Algebra January 6th, 2019

Introduction

Let *R* be a commutative ring and *M* an *R*-module.

We set $A = R \oplus M$ as an additive group and define the multiplication in A by

$$(a,x)\cdot(b,y)=(ab,ay+bx)$$

for $(a, x), (b, y) \in A$. Then, A forms a commutative ring, which we denote by $A = R \ltimes M$ and call the idealization of M over R.

Fact

$R \ltimes M$	R	М
Noether	$\Leftrightarrow Noether$	+ fin. gene.
СМ	$\Leftrightarrow CM$	+ MCM
Gorenstein	$\Leftrightarrow CM$	+ canon. module

Fact

$R \ltimes M$	R	М
Noether	$\Leftrightarrow Noether$	+ fin. gene.
CM	$\Leftrightarrow CM$	+ MCM
???	$\Leftrightarrow CM$	+ "nice" MCM
Gorenstein	$\Leftrightarrow CM$	+ canon. module

Fact

$R \ltimes M$	R	М
Noether	$\Leftrightarrow Noether$	+ fin. gene.
СМ	$\Leftrightarrow CM$	+ MCM
???	$\Leftrightarrow CM$	+ "nice" MCM
Gorenstein	$\Leftrightarrow CM$	+ canon. module

Problem 1.

Find "nice" MCM modules of R by analyzing the Cohen-Macaulay type of the idealization $R \ltimes M$.

Setting

Suppose

(R, m): a Cohen-Macaulay local ring of dimension d
M:a non-zero maximal Cohen-Macaulay R-module
A = R ⋉ M

$\mathbf{r}_R(M) = \ell_R(\mathsf{Ext}^d_R(R/\mathfrak{m}, M))$

denotes the Cohen-Macaulay type of *M*. Set $r(R) = r_R(R)$.

Let Q(R) be the total ring of fractions of R. For R-submodules X and Y of Q(R), let

 $X : Y = \{a \in Q(R) \mid aY \subseteq X\}$ and $X :_R Y = (X : Y) \cap R.$

Outline

(

The inequality
$$r_R(M) \leq r(R \ltimes M) \leq r_R(M) + r(R)$$

2 Condition
$$r_R(M) = r(R \ltimes M)$$

3 Condition
$$\operatorname{r}(R\ltimes M) = \operatorname{r}_R(M) + \operatorname{r}(R)$$

Outline

1 The inequality $r_R(M) \leq r(R \ltimes M) \leq r_R(M) + r(R)$

2 Condition $r_R(M) = r(R \ltimes M)$

3 Condition $r(R \ltimes M) = r_R(M) + r(R)$

Lemma 2.

Let (R, \mathfrak{m}) be a commutative local ring and let M be an R-module. We set $A = R \ltimes M$ and denote by $\mathfrak{n} = \mathfrak{m} \times M$ the maximal ideal of A. Then

 $(0):_{\mathcal{A}}\mathfrak{n}=([(0):_{\mathcal{R}}\mathfrak{m}]\cap \operatorname{Ann}_{\mathcal{R}}M)\times [(0):_{\mathcal{M}}\mathfrak{m}].$

Therefore, when R is an Artinian local ring,

 $(0):_{A} \mathfrak{n} = (0) \times [(0):_{M} \mathfrak{m}] \Leftrightarrow \operatorname{Ann}_{R} M = (0).$

Theorem 3.

Let R be a CM local ring and M an MCM R-module. Set $A = R \ltimes M$. Then

 $\operatorname{r}_{R}(M) \leq \operatorname{r}(A) \leq \operatorname{r}_{R}(M) + \operatorname{r}(R).$

Let \mathfrak{q} be a parameter ideal of R. We then have the following. (1) $r(A) = r_R(M) \Leftrightarrow M/\mathfrak{q}M$ is a faithful R/\mathfrak{q} -module. (2) $r(A) = r_R(M) + r(R) \Leftrightarrow (\mathfrak{q} :_R \mathfrak{m})M = \mathfrak{q}M$.

(proof) We may assume that R is Artin. Then, since

$$(0) \subseteq [(0) :_R \mathfrak{m}] \cap \operatorname{Ann}_R M \subseteq (0) :_R \mathfrak{m}$$

 $\operatorname{r}_R(M) \leq \operatorname{r}(A) \leq \operatorname{r}_R(M) + \operatorname{r}(R).$

Example 4.

Let k be a field and set

$$S = k[[X_1, X_2, \ldots, X_\ell]] \ (\ell \geq 2).$$

Suppose that $R = S/\mathbb{I}_2(\mathbb{M})$, where $\mathbb{M} = \begin{pmatrix} x_1 & x_2 & \dots & x_{\ell-1} & x_\ell \\ x_2 & x_3 & \dots & x_\ell & x_1^2 \end{pmatrix}$. Then R is a one-dimensional CM local ring with $r(R) = \ell - 1$. Consider ideals

$$I_i = (x_1) + (x_i, x_{i+1}, \dots, x_\ell)$$
 for all $2 \le i \le \ell$

of R, where x_j denotes the image of X_j in R. Then

$$\mathbf{r}(R \ltimes I_i) = \mathbf{r}_R(I_i) + (\ell - i + 1).$$

2nd equality

Proposition 5.

Let $M \in \Omega CM(R)$. Then

 $\mathbf{r}(R \ltimes M) = \begin{cases} \mathbf{r}_R(M) & \text{if } R \text{ is a direct summand of } M, \\ \mathbf{r}_R(M) + \mathbf{r}(R) & \text{otherwise.} \end{cases}$

(proof) Take an exact sequence

$$0 \to M \xrightarrow{\varphi} F \to X \to 0,$$

where F is free and X is an MCM R-module. Let q be a parameter ideal of R. Then

$$0 o M/\mathfrak{q}M \xrightarrow{\overline{\varphi}} F/\mathfrak{q}F o X/\mathfrak{q}X o 0.$$

If *M* has no free summands, $\overline{\varphi}(M/\mathfrak{q}M) \subseteq \mathfrak{m}(F/\mathfrak{q}F)$. Hence, $(\mathfrak{q}:_R \mathfrak{m})M = \mathfrak{q}M$.

$\mathbf{r}_{R}(M) \leq \mathbf{r}(R \ltimes M) \leq \mathbf{r}_{R}(M) + \mathbf{r}(R)$	1st equality	2nd equality	Other related topics

Outline

${f 1}$ The inequality ${ m r}_R(M) \leq { m r}(R\ltimes M) \leq { m r}_R(M) + { m r}(R)$

2 Condition $r_R(M) = r(R \ltimes M)$

3 Condition $r(R \ltimes M) = r_R(M) + r(R)$

Definition 6 (Brennan-Vasconcelos (2001)).

Let *M* be an MCM *R*-module. We say that *M* is residually faithful, if M/qM is a faithful R/q-module for some parameter ideal q of *R*.

Note that

M is a residually faithful module \Leftrightarrow $r_R(M) = r(R \ltimes M)$.

Therefore, the property of residually faithful is independent of the choice of a parameter ideal q of R.

Theorem 7.

Suppose that R possesses the canonical module $\mathrm{K}_R.$ Set

 $t : \operatorname{Hom}_{R}(M, \operatorname{K}_{R}) \otimes_{R} M \to \operatorname{K}_{R}$, where $t(f \otimes x) = f(x)$.

Then

$$r(A) = r_R(M) + \mu_R(\operatorname{Coker} t).$$

Corollary 8.

Suppose that R possesses the canonical module $\mathrm{K}_{R}.$ Then TFAE.

- (1) $r(R \ltimes M) = r_R(M)$.
- (2) $t : \operatorname{Hom}_R(M, \operatorname{K}_R) \otimes_R M \to \operatorname{K}_R$ is surjective.
- (3) *M* is a residually faithful *R*-module.

Proposition 9 (Properties of residaully faithful (RF)).

Let M be an MCM R-module. Then the following assertions hold true.

- (1) Let $a \in \mathfrak{m}$ be a NZD of R and $\overline{*} = R/aR \otimes_R *$. Then M is a (RF) R-module $\Leftrightarrow \overline{M}$ is a (RF) \overline{R} -module.
- (2) Suppose that $\exists K_R$. Then M is a (RF) R-module $\Leftrightarrow M^v$ is a (RF) R-module.
- (3) Let φ : R → S be a flat local homomorphism of CM local rings. Then
 M is a (RF) R-module ⇔ S ⊗_R M is a (RF) S-module.
- (4) Suppose that M is a (RF) R-module. Then
 - M is a faithful R-module.
 - $M_{\mathfrak{p}}$ is a (RF) $R_{\mathfrak{p}}$ -module for $\forall \mathfrak{p} \in \operatorname{Spec} R$.

$\mathbf{r}_{R}(M) \leq \mathbf{r}(R \ltimes M) \leq \mathbf{r}_{R}(M) + \mathbf{r}(R)$	1st equality	2nd equality	Other related topics
Outline			

1 The inequality $r_R(M) \leq r(R \ltimes M) \leq r_R(M) + r(R)$

2 Condition $r_R(M) = r(R \ltimes M)$

3 Condition $r(R \ltimes M) = r_R(M) + r(R)$

 $r_R(M) \le r(R \ltimes M) \le r_R(M) + r(R)$

1st equality

2nd equality

Other related topics

Notation

Set

- $CM(R) = \{M \mid M \text{ is a nonzero MCM } R \text{-module}\}$
- $\Omega CM(R) = \{M \in CM(R) \mid \exists 0 \to M \to F \to X \to 0, s.t. F \text{ is free and } X \in CM(R)\}$
- $\Omega CM^{\times}(R) = \{M \in \Omega CM(R) \mid M \text{ has no free summands}\}$
- $\operatorname{UI}(R) = \{M \in \operatorname{CM}(R) \mid \mu_R(M) = \operatorname{e}^0_{\mathfrak{m}}(M)\}$

Note that $M \in UI(R)$ is called an Ulrich *R*-module.

Set

$$\mathcal{A} = \{ M \in \mathsf{CM}(R) \mid \mathrm{r}(R \ltimes M) = \mathrm{r}_R(M) + \mathrm{r}(R) \}.$$

Theorem 10.

The inclusions

$\Omega \mathsf{CM}^{\times}(R) \subseteq \mathcal{A} \text{ and } \mathsf{UI}(R) \subseteq \mathcal{A}$

holds and we have the following.

- (1) $UI(R) = A \Leftrightarrow R$ has maximal embedding dimension.
- (2) [Kobayashi (2017)] Suppose that dim R = 1 and Q(R̂) is a Gorenstein ring. Then
 ΩCM[×](R) = A ⇔ R is an almost Gorenstein local ring.

$r_R(l)$	M)					M)		r _R	(M)		r((R)	
----------	----	--	--	--	--	----	--	----------------	-----	--	----	-----	--

Outline

${f 1}$ The inequality ${ m r}_R(M) \leq { m r}(R\ltimes M) \leq { m r}_R(M) + { m r}(R)$

2 Condition $r_R(M) = r(R \ltimes M)$

3 Condition $\operatorname{r}(R\ltimes M)=\operatorname{r}_R(M)+\operatorname{r}(R)$

2nd equality

Bounding the supremum sup $r(R \ltimes M)$

Let r > 0 be an integer and set

$$\mathcal{F}_r(R) = \{ M \in \mathsf{CM}(R) \mid M \subseteq R^{\oplus r} \}.$$

Theorem 11.

Let $M \in \mathcal{F}_r(R)$. Then

$\operatorname{r}(R \ltimes M) \leq \operatorname{r}(R) + r \cdot \operatorname{e}(R).$

The equality holds if and only if either R is a RLR or M is an Ulrich R-module, possessing rank r.

2nd equality

Bounding the supremum sup $r(R \ltimes M)$

Corollary 12.

Suppose that (R, \mathfrak{m}) is a CM local ring of dimension one. Let \mathcal{F} be the set of \mathfrak{m} -primary ideals of R. Then

$$\sup_{I \in \mathcal{F}} \operatorname{r}(R \ltimes I) = \begin{cases} 1 & \text{if } R \text{ is a DVR,} \\ \operatorname{r}(R) + \operatorname{e}(R) & \text{otherwise.} \end{cases}$$

 $r_R(M) \le r(R \ltimes M) \le r_R(M) + r(R)$

1st equality

2nd equality

Other related topics

One-dimensional case

Assume that dim R = 1. Let I be an \mathfrak{m} -primary ideal.

Definition 13.

(1) I is called a closed ideal if I : I = R.

(2) I is called a trace ideal if (R:I)I = I.

One-dimensional case

Theorem 14.

Suppose that R is a Gorenstein ring and let I be an \mathfrak{m} -primary ideal. Then the following assertions hold true.

- (1) Every closed ideal of R is principal.
- (2) $r(R \ltimes I) = 1 + r_R(I)$, if $\mu_R(I) > 1$.

(3)
$$r(R/I) \le r_R(I) \le 1 + r(R/I)$$
.

(4) If I is a trace ideal, then $r_R(I) = 1 + r(R/I)$.

Corollary 15.

Let R be a Gorenstein ring which is not a DVR. Then $R \ltimes \mathfrak{m}$ is an almost Gorenstein ring, possessing $r(R \ltimes \mathfrak{m}) = 3$.

Thank you for your attention.